Реферат Теория вероятности: возникновение и развитие. Вероятность и статистика – основные факты Применение методов теории вероятностей в профессиональной деятельности

В статье рассмотрены основные задачи, в которых применяются различные методы теории вероятностей.

  • Анализ динамических рядов (на примере отрасли пчеловодства)
  • Применение теории вероятностей и математической статистики в страховой деятельности
  • Самоанализ как начальный этап в освоении технологий самоменеджмента
  • Средства стохастической подготовки обучающихся на основе информационных технологий

Теория вероятностей – это наука, изучающая использование специфических методов для решения задач, которые возникают при рассмотрении случайных величин. Она раскрывает закономерности, которые относятся к массовым явлениям. Эти методы не могут предсказать исход случайного явления, но могут предсказать суммарный результат. Следовательно, если мы изучим законы, которые управляют случайными событиями, то сможем при необходимости изменить ход этих событий. В свою очередь, математическая статистика - это раздел математики, который изучает методы сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия на их основе решений.

Почему же для обработки простых наборов данных требуется целая наука? Потому что эти данные, как бы мы не старались, никогда не являются точными, содержат случайные ошибки. Это могут быть и погрешности измерительных приборов, и человеческие ошибки, а так же неоднородность данных или, конечно, их недостаточность.

Обычно исследователь многократно повторяет свой опыт, получая большое количество однотипных данных, которые надо обработать и сделать весомые выводы, которые позволят не только продвинуться глубже в изучении предмета, но и сделать выводы, прогнозы, принять важные экономические решения и т.д.

Именно математическая статистика дает методы для обработки данных, алгоритмы для проверки статистических гипотез, критерии адекватности и значимости выбранной модели или закона, обоснованные границы точности для параметров распределения, которые мы можем получить исходя из наших данных и т.п.

Существует интересная история, которая говорит о том, что своим появлением теория вероятности обязана азартным играм. Основателем теории вероятностей считается французский ученый Блез Паскаль, который занимался в таких областях как физика, математика, философия. Однако на самом деле, Паскаль в своих работах обобщил опыт своего друга, известного в свое время Шевалье де Мере. Де Мере был азартным игроком, он увлекся расчетами того, сколько раз необходимо будет бросить игральные кости, чтобы заветные две шестерки выпали более, чем в половине случаев. Эти, казалось бы, не слишком серьезные вычисления, заставили Шевалье более глубоко заняться изучением вопроса вероятности, а позднее – вызвали интерес Паскаля.

В России наибольший интерес к теории вероятностей возник в первой половине XIX в. Значительный вклад в развитие науки теории вероятностей внесли русские ученые: П.Л. Чебышев, А.А. Марков, А.М. Ляпунов. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Практическое применение теории вероятностей велико. Во многих сферах и областях жизни применяются методы теории вероятностей. Рассмотрим некоторые из них на конкретных примерах.

1. В случайном эксперименте дети симметричную монету бросают трижды. Найти вероятность того, что орел выпадет ровно два раза.

Шаг первый - выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Бросков всего на один больше, а комбинаций возможных уже n=8 .

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет m=3. Тогда вероятность события P=m/n=3/8=0.375P=m/n=3/8=0.375.

2. Для прядения бабушка смешала поровну черный и окрашенный хлопок. Какова вероятность что среди 1200 единиц окажется больше половины черного хлопка.

Решение. Общее число вариантов события - 1200. Теперь определим общее число благоприятных вариантов. Благоприятные варианты будут в том случае, когда количество черных единиц больше половины, то есть 601, 602 и так до 1200. То есть 599 благоприятных вариантов. Таким образом, вероятность благоприятного исхода составит
599 / 1200 = 0,499 .

3. Ребенок имеет на руках 5 кубиков с буквами: А, К, К, Л, У. Какова вероятность того, что ребенок соберет из кубиков слово "кукла"?

Решение: Используем формулу классической вероятности: P=m/n, где n - число всех равновозможных элементарных исходов, m - число элементарных исходов, благоприятствующих осуществлению события. Число различных перестановок из букв А, К, К, Л, У равно n=5!1!2!1!1!=1⋅2⋅3⋅4⋅51⋅2=60, из них только одна соответствует слову "кукла" (m=1), поэтому по классическому определению вероятности вероятность того, что ребенок соберет из кубиков слово "кукла" равна P=1/60.

4. Мужчина на шахматную доску случайным образом поставил две ладьи. Какова вероятность, что они не будут бить одна другую?

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов. Число всех способов расставить ладьи равно n=64⋅63=4032 (первую ладью ставим на любую из 64 клеток, а вторую - на любую из оставшихся 63 клеток). Число способов расставить ладьи так, что они не будут бить одна другую равно m=64⋅(64−15)=64⋅49=3136 (первую ладью ставим на любую из 64 клеток, вычеркиваем клетки, которые находятся в том же столбце и строке, что и данная ладья, затем вторую ладью ставим на любую из оставшихся после вычеркивания 49 клеток).

Тогда искомая вероятность P=3136/4032=49/63=7/9=0,778.

Ответ: 7/9.

5. Студент пришел на зачет, зная только 40 вопросов из 60. Какова вероятность сдачи зачета, если после отказа отвечать на вопрос преподаватель задает еще один?

Решение: Вероятность того, что преподаватель задал студенту вопрос, на который он не знал ответа (событие А) равна Р(А) = . Найдем вероятность того, что на второй вопрос преподавателя студент знает ответ (событие В) при условии, что ответа на первый вопрос студент не знал. Это условная вероятность, так как событие А уже произошло. Отсюда Р А (В) = 40/59. Искомую вероятность определим по теореме умножения вероятностей зависимых событий. Р(А и В) = Р(А)* Р А (В) = 40/59*20/60 = 0,23.

Таким образом, наша жизнь без применения теории вероятностей невозможна.

Список литературы

  1. Анасова, Т.А., Теория вероятностей [Электронный ресурс] : курс лекций для обучающихся по программе бакалавров и магистров высших учеб. заведений / Т. А. Анасова, Э. Ф. Сагадеева; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа: [БашГАУ], 2014. - 68 с.
  2. Гизетдинова, А. И., Применение актуарных расчетов в страховании [Текст] / А. И. Гизетдинова, Э. Ф. Сагадеева // Тенденции и перспективы развития статистической науки и информационных технологий: сборник научных статей, посвящается юбилею профессора кафедры статистики и информационных систем в экономике Рафиковой Н. Т. / Башкирский ГАУ. - Уфа, 2013. - С. 192-194.
  3. Кабашова, Е.В. Математическая экономика. Модуль 1. Обобщенные модели экономики [Электронный ресурс] : учеб. пособие / Е.В. Кабашова, Э.Ф. Сагадеева. – Уфа: Башкирский ГАУ, 2013. – 68 с.
  4. Кабашова, Е.В. Математическая экономика. Модуль 2. Глобальные модели экономики [Электронный ресурс] : учеб. пособие / Е.В. Кабашова, Э.Ф. Сагадеева. – Уфа: Башкирский ГАУ, 2013. – 64 с.
  5. Научные основы развития сельского хозяйства Республики Башкортостан [Текст] / К. Б. Магафуров; Башкирский ГАУ. - Уфа: Изд-во БГАУ, 2003. - 112 с.
  6. Сагадеева, Э. Ф., Опыт кураторской работы в Башкирском государственном аграрном университете [Текст] / Э. Ф. Сагадеева // Проблемы повышения качества учебно-методической работы в вузе: опыт и инновации: сборник научных трудов / Российский университет кооперации, Башкирский кооперативный институт (филиал). - Уфа, 2009. - Вып. 11. - С. 128-131.
  7. Сагадеева, Э. Ф., Выполнение актуарных расчетов с использованием коммутационных чисел с применением ЭВМ [Текст] / Э. Ф. Сагадеева, Р. Р. Бакирова // Потребительская кооперация и отрасли экономики Башкортостана: инновационные аспекты развития: сборник научных трудов / Российский университет кооперации, Башкирский кооперативный институт (филиал). - Уфа, 2008. - [Вып.10]. - С. 132-138.

Гатауллина Лилия

В своей исследовательской работе я попробую проверить, действительно ли теория вероятности действует и как её можно применить в жизни.

Скачать:

Предварительный просмотр:

X республиканская научно-практическая конференция

«Рождественские чтения»

Секция: математика

Исследовательская работа

Случайность или закономерность?

или

Теория вероятности в жизни

Гатауллина Лилия,

школа№66, 8 Б класс

Московский район, город Казань

Научный руководитель: учитель математики 1кв. кат Магсумова Э.Н

Казань 2011

Введение...............................................................................................................3

Глава 1. Теория вероятности – что это?……………….....................................5

Глава 2. Эксперименты…………………………………………………………7

Глава 3. Можно ли выиграть в лотерею или рулетку? …………………........9

Заключение.........................................................................................................11

Список литературы.............................................................................................12

Приложение

Введение

Людей всегда интересовало будущее. Человечество во все врем ена искало способ его предугадать, или спланировать. В разное время разными способами. В современном мире есть теория, которую наука признает и пользуется для планирования и прогнозирования будущего. Речь о теории вероятностей .

В жизни мы часто сталкиваемся со случайными явлениями. Чем обусловлена их случайность – нашим незнанием истинных причин происходящего или случайность лежит в основе многих явлений? Споры на эту тему не утихают в самых разных областях науки. Случайным ли образом возникают мутации, насколько зависит историческое развитие от отдельной личности, можно ли считать Вселенную случайным отклонением от законов сохранения? Пуанкаре, призывая разграничить случайность, связанную с неустойчивостью, от случайности, связанной с нашим незнанием, приводил следующий вопрос: «Почему люди находят совершенно естественным молиться о дожде, в то время как они сочли бы смешным просить в молитве о затмении?»

У каждого "случайного" события есть четкая вероятность его наступления. Например, посмотрите официальную статистику пожаров в России. (см. приложение №1) Вас ничего не удивляет? Данные из года в год стабильные.
За 7 лет разброс от 14 до 19 тысяч погибших.Задумайтесь, пожар - событие случайное. Но можно с большой точностью предсказать сколько погибнет людей в пожаре в следующем году (~ 14-19 тысяч).

В стабильной системе вероятность наступления событий сохраняется из год в год. То есть, с точки зрения человека с ним произошло случайное событие. А с точки зрения системы, оно было предопределенно.

Разумный человек должен стремиться мыслить, исходя из законов вероятностей (статистики). Но в жизни о вероятности мало кто думает. Решения принимаются эмоционально.

Люди боятся летать самолетами. А между тем, самое опасное в полете на самолете - это дорога в аэропорт на автомобиле. Но попробуй кому-то объяснить, что машина опасней самолета. Вероятность того, что пассажир, севший в самолет погибнет в авиакатастрофе составляет примерно

1/8 000 000. Если пассажир будет садиться каждый день на случайный рейс, ему понадобится 21 000 лет чтобы погибнуть.(см.приложение №2)

По исследованиям: в США в первые 3 месяца после терактов 11 сентября 2001 года погибло еще одна тысяч людей... косвенно. Они в страхе перестали летать самолетами и начали передвигаться по стране на автомобилях. А так как это опасней, то количество смертей возросло.

По телевидению пугают: птичьим и свиными гриппами, терроризмом..., но вероятность этих событий ничтожна по сравнению с настоящими угрозами. Опасней переходить дорогу по зебре, чем лететь на самолете. От падения кокосов погибает ~ 150 человек в год. Это в десятки раз больше, чем от укуса акул. Но фильма "Кокос-убийца" пока не снято. Подсчитано, что шанс человека быть подвергнутым нападению акулы составляет 1 к 11,5 млн, а шанс погибнуть от такого нападения 1 к 264,1 млн. Среднегодовое количество утонувших в США составляет 3306 человек, а погибших от акул 1. Миром правит вероятность и нужно помнить об этом. Они помогут вам взглянуть на мир с точки зрения случая. (см. приложение №3)

В своей исследовательской работе я попробую проверить, действительно ли теория вероятности действует и как её можно применить в жизни.

Вероятность события в жизни не так уж часто считается по формулам, скорее интуитивно. Но проверить совпадает ли «эмпирический анализ» с математическим, иногда очень полезно.

Глава 1. Теория вероятности – что это?

Теория вероятностей или теория вероятности – это один из разделов Высшей Математики. Это самый интересный раздел Науки Высшая Математика Теория вероятности, которая являясь сложной дисциплиной, имеет применение в реальной жизни. Теория вероятностей представляет несомненную ценность для общего образования. Эта наука позволяет не только получать знания, которые помогают понимать закономерности окружающего мира, но и находить практическое применение теории вероятности в повседневной жизни. Так, каждому из нас каждый день приходиться принимать множество решений в условиях неопределенности. Однако эту неопределенность можно «превратить» в некоторую определенность. И тогда это знание может оказать существенную помощь при принятии решения. Изучение теории вероятностей требует больших усилий и терпения.

Теперь же давайте перейдем к самой теории и истории ее возникновения. Главным понятием теории вероятностей является вероятность. Это слово «вероятность», синонимом которого является, например, слово «шанс» достаточно часто применяется в повседневной жизни. Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу», или «это просто невероятно», или «есть шанс получить зачет автоматом». Такого рода фразы на интуитивном уровне оценивают вероятность того, что произойдет некоторое случайное событие. В свою очередь матем атическая вероятность дает некоторую числовую оценки вероятности того, что произойдет некоторое случайное событие.

Теория вероятностей оформилась в самостоятельную науку относительно не давно, хотя история теории вероятностей началась еще в античности. Так, Лукреций, Демокрит, Кар и еще некоторые ученые древней Греции в своих рассуждениях говорили о равновероятностных исходах такого события, как возможность того, что вся материя состоит из молекул. Таким образом, понятие вероятности использовалось на интуитивном уровне, но оно не было выделено в новую категорию. Тем не менее, античные ученые заложили прекрасный фундамент для возникновения этого научного понятия. В средние века, можно сказать, и зародилась теория вероятности, когда были приняты первые попытки математического анализа, таких азартных игр как кости, орлянка, рулетка.

Первые научные работы по теории вероятностей появились в 17 веке. Когда такие ученые как Блез Паскаль и Пьер Ферма открыли некоторые закономерности, которые возникают при бросании костей. В ту же пору к данному вопросу проявлял интерес еще один ученый Христиан Гюйгенс. Он в 1657 в своей работе ввел следующие понятия теории вероятностей: понятие вероятности как величины шанса или возможности; математическое ожидание для дискретных случаев, в виде цены шанса, а также теоремы сложения и умножения вероятностей, которые правда не были сформулированы в явном виде. Тогда же теория вероятностей стала находить сферы своего применения – демографию, страховое дело, оценку ошибок наблюдений.

Дальнейшее развитие теории вероятностей привело к необходимости аксиоматизации теории вероятностей и главного понятия – вероятности. Так становление аксиоматики теории вероятностей произошло в 30 гг 20 века. Самый существенный вклад в заложение основ теории внес Космогоров А.Н.

На сегодняшний день теории вероятностей это самостоятельная наука, имеющая огромную сферу применения. В данном разделе сайта Вы найдете шпаргалки по теории вероятности, лекции и задачи по теории вероятностей, литературу, а также много интересных статей о применении теории вероятностей в жизни.

Глава 2. Эксперименты

Я решила проверить классическое определение вероятности.

Определение: Пусть множество исходов опыта состоит из n равновероятных исходов. Если m из них благоприятствуют событию A, то вероятностью события A называется число Р(А) = m/n.

Возьмем, к примеру, игру в монету. При бросании может быть два равновероятных исхода: монета может упасть кверху гербом или решкой. Бросая монету один раз нельзя предугадать, какая сторона окажется сверху. Однако, бросив монету 100 раз, можно сделать выводы. Можно заранее сказать, что герб выпадет не 1 и не 2 раза, а больше, но и не 99 и не 98 раз, а меньше. Число выпадений герба будет близко к 50. На самом деле, и на опыте можно в этом убедиться, что это число будет заключено между 40 и 60. Кто и когда впервые проделал опыт с монетой, неизвестно.

Французский естествоиспытатель Бюффон (1707-1788) в восемнадцатом столетии 4040 раз подбрасывал монету-герб выпал 2048 раз. Математик К.Пирсон в начале в начале нынешнего столетия подбрасывал ее 24 000 раз-герб выпал 12012 раз. Лет 20 назад американские экспериментаторы повторили опыт. При 10 000 подбрасываний герб выпал 4979 раз. Значит, результаты бросаний монеты, хотя каждое из них и является случайным событием, при неоднократном повторении подвластны объективному закону.

Проведём опыт. Для начала, возьмем в руки монетку, будем ее бросать и записывать результат последовательно в виде строки: О, Р, Р, О, О, Р. Здесь буквами О и Р обозначено выпадение орла или решки. В нашем случае бросание монетки – это испытание, а выпадение орла или решки – событие, то есть возможный исход нашего испытания. Результаты эксперимента представлен в приложении № 4. Проведя 100 испытаний орел выпал - 55, решка - 45.Вероятность выпадения орла в данном случае-0,55; решки – 0,45. Таким образом, я показала, что теория вероятности в данном случае имеет место быть.

Рассмотрим задачу с тремя дверьми и призами за ней: «Автомобиль или козлы»? или «парадокс Монти Холла». Условия задачи таковы:

Вы участвуете в игре. Ведущий предлагает выбрать одну из трех дверей и рассказывает о том, что за одной из дверей находится выигрыш – автомобиль, за двумя другими дверями спрятаны козы. После того, как Вы остановили свой выбор на одной из дверей, ведущий, который знает что находится за каждой дверью, открывает одну из оставшихся двух дверей и демонстрирует, что за ней находится козел (коза, пол животного в этом случае на так уж важен) А потом ведущий хитро так спрашивает: «Желаете ли Вы изменить свой выбор двери?» Увеличит ли изменение выбора шансы на выигрыш?

Если подумать: вот две закрытые двери, одну Вы уже выбрали и вероятность что за выбранной дверью автомобиль/коза 50% как и с подбрасыванием монетки. Но это совсем не так. Если поменять свое решение и выбрать другую дверь, то шансы выигрыша увеличатся в 2 раза! Опыт подтвердил данное утверждение (см. приложение №5). Т.е. оставив свой выбор, игрок получит автомобиль в одном из трех случаев, а поменяв двух из трех. Статистика телепередачи подтверждает, что те, кто менял свой выбор, выигрывали в два раза чаще.

Это все теория вероятности и она верна на «множестве вариантов». Надеюсь, что этот пример заставит вас задуматься, как быстро взять в руки книгу о теории вероятностей, а также начать ее применять в своей работе. Поверьте, это интересно и увлекательно, да и практический толк есть.

Глава 3. Можно ли выиграть в лотерею или рулетку?

Каждый из нас хоть раз в жизни покупал лотерею или играл в азартные игры, но далеко не все использовали заранее спланированную стратегию. Умные игроки давно перестали надеяться на удачу и включили рациональное мышление.
Дело в том, что каждое событие имеет определенное математическое ожидание, как гласит высшая математика и теория вероятности, и, если правильно оценивать ситуацию, то можно обойти неудовлетворительный исход события.

К примеру, в любой игре, такой, как рулетка, есть возможность играть с вероятностью на выигрыш 50%, ставя на выпадение четного числа, или красной ячейки. Вот как раз эту игру мы и рассмотрим.

Для обеспечения прибыли, составим несложную стратегию игры. К примеру, мы имеем возможность посчитать, с какой вероятностью выпадет четное число 10 раз подряд - 0,5*0,5 и так 10 раз. Умножаем на 100% и получаем всего 0,097%, или же, примерно, 1 шанс из 1 000.
Столько игр, пожалуй, сыграть вам не удастся и за всю свою жизнь, значит, вероятность выпадения 10 четных чисел подряд практически равна «0». Воспользуемся этой тактикой игры на практике.
Но это еще не все, даже 1 раз из 1 000 – это для нас много, так что сократим это число до 1 из 10 000. Вы спросите, каким образом это можно сделать, не увеличивая заранее предполагаемое количество выпадения четных чисел подряд? Ответ прост – время.

Подходим к рулетке и ждем пока выпадет 2 раза подряд четное число. Это будет каждый раз из четырех расчетных случаев. Теперь ставим минимальную ставку на четное число, к примеру 5р, и выигрываем по 5р за каждое выпадение четного числа, вероятность которого 50%.
Если же выпало нечетное, то увеличиваем следующую ставку в 2 раза, то есть ставим уже 10р. В этом случае вероятность проиграть будет равна 6%. Но не паникуйте, если даже в этот раз вы проиграете! Делайте повышение каждый раз в два раза больше. С каждым разом математическое ожидание на выигрыш увеличивается, и Вы в любом случае останетесь в прибыли.

Важно учесть тот факт, что эта стратегия подходит только для малых ставок, так как, изначально поставив большие деньги - Вы рискуете проиграть все из-за ограничений ставок в будущем. Если у Вас возникли сомнения по данной тактике, сыграйте с другом в угадывание стороны монеты на вымышленные деньги, ставя при проигрыше ставку в два раза больше.
Через время Вы убедитесь, что эта методика проста на практике и очень эффективна! Можно сделать вывод, что играя по данной стратегии, Вы не заработаете миллионы, а лишь выиграете себе на мелкие расходы.

Заключение

Изучая тему «теории вероятности в жизни», я поняла, что это огромный раздел науки математики. И изучить его в один заход невозможно.

Перебрав множество фактов из жизни, и проведя эксперименты в домашних условиях, я поняла, что действительно теория вероятности в жизни имеет место быть. Вероятность события в жизни не так уж часто считается по формулам, скорее интуитивно. Но проверить совпадает ли «эмпирический анализ» с математическим, иногда очень полезно.

Можем ли мы предугадать с помощью этой теории, что случится с нами через день, два, тысячу? Конечно нет. Событий связанных с нами в каждый момент времени очень много. Только на одну лишь типизацию этих событий не хватит и жизни. А уж их совмещение - и вовсе гиблое дело. С помощью этой теории предугадывать можно лишь однотипные события. Например, такое как бросание монеты - это событие из 2 вероятностных результатов. В общем, прикладное применение теории вероятностей связанно с немалым количеством условий и ограничений. Для сложных процессов сопряжено с вычислениями, которые под силу лишь компьютеру .

Но следует помнить, что в жизни есть ещё такое понятие как удача, везение. Это то, что мы говорим - повезло, когда например какой-нибудь человек не учился никогда, никуда не стремился, лежал на диване, играл в компьютер, а через 5 лет мы видим как у него берут интервью на MTV. У него была вероятность 0.001 стать музыкантом, она выпала, ему повезло, такое схождение обстоятельств. То, что мы называем - оказался в нужном месте и в нужное время, когда срабатывают те самые 0.001.

Таким образом, работаем над собой, принимаем решения, которые могут повысить вероятность выполнения наших желаний и стремлений, каждый случай может добавить те заветные 0.00001, которые сыграют решающую роль в итоге.

Список литературы

ОСНОВНЫЕ ПОНЯТИЯ И КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Представленный материал рассчитан на студентов, знакомящихся с вероятностными методами описания и анализа случайных явлений, которые составляют основу математических моделей общетехнического курса «Надежность технических систем».

II.1. Применение теории вероятностей в технике

Теория вероятностей необходима при решении многих технических задач.

Особенность теории вероятностей состоит в том, что она рассматривает явления, где в той или иной форме присутствует неопределенность. Поэтому существует представление, что вероятностные методы решения практических задач считаются менее предпочтительными, чем «точный» анализ, т. к. обращаться к этим методам вынуждает якобы отсутствие достаточно полной информации. Кроме того, многие считают теорию вероятностей загадочной областью математической науки.

Представленные мнения неверны. Во-первых, вряд ли есть еще хотя бы одна область математики, которая с такой полнотой базируется на столь ограниченном наборе исходных представлений (всего три аксиомы, которые почти очевидны). Во-вторых, догматическое стремление представить физические законы детерминистическими и справедливыми при любых обстоятельствах. Безусловно, нельзя отрицать закон Ома, однако на микро уровне происходящих процессов он не выполняется – факт, который очевиден любому, кто когда-нибудь подключал резистор большого номинала к входу усилителя с высоким коэффициентом усиления и слышал шумы, появляющиеся в результате этого на выходе.

Итак, в лучшем случае, непреложные законы отражают «поведение» природы, так сказать, «в среднем». Во многих ситуациях такое «среднее поведение» достаточно близко к тому, что наблюдается на практике, и имеющимися отклонениями можно пренебречь. В других, не менее важных ситуациях, случайные отклонения могут оказаться значительными, что требует использования аналитических методов, построенных на вероятностных концепциях.

Поэтому становится ясным, что так называемое «точное решение» вовсе не всегда является точным и, более того, представляет собой идеализированный частный случай, который на практике почти не встречается. С другой стороны, вероятностный подход – далеко не худшая замена точным методам решения и наиболее полно отражает физическую реальность. Кроме того, он включает в себя результат детерминистического подхода в качестве частного случая.

Теперь имеет смысл описать в общем типы ситуаций, в которых применение вероятностных методов расчета при решении практических задач скорее является правилом, чем исключением.

Случайные параметры систем. В ряде случаев те или иные параметры системы могут быть неизвестны или изменяться случайным образом. Типичными примерами таких систем являются электроэнергетические сети, нагрузки которых непредсказуемы и варьируются в широких пределах; телефонные системы, число пользователей которых случайным образом меняется во времени; электронные системы, параметры которых носят случайный характер, из-за того, что характеристики полупроводниковых приборов устанавливаются диапазоном возможных значений.

Надежность систем. В состав любой технической системы входит большое количество различных элементов, отказ одного или нескольких из них может вызвать выход из строя всей системы. По мере усложнения и повышения стоимости систем на стадии конструирования возникает задача синтеза логических структурных схем надежности и оптимизации безотказности.

Контроль качества и диагностика. Повышение потребительских свойств и конкурентоспособности продукции может быть достигнуто выходным контролем и диагностикой в процессе эксплуатации. Для этого требуются правила проверки отдельных случайно выбранных элементов, вероятностные методы распознавания дефектов и прогнозирования работоспособности.

Теория информации. Количественная мера информационного содержания различных сообщений: численные и графические данные, технические измерения носят вероятностный характер. Кроме того, пропускная способность каналов связи зависит от случайных шумовых воздействий.

Из краткого перечисления ясно, что при решении большого числа технических задач приходится встречаться с неопределенностью, а это делает теорию вероятностей необходимым инструментом современного инженера.

II.2. Основные понятия

II.2. 1. Основы теории множеств.

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Одним из основных понятий является понятие случайного события (в дальнейшем просто событие).

Событием называется всякий факт (исход), который в результате опыта (испытания, эксперимента) может произойти или не произойти. Каждому из таких событий можно поставить в соответствие определенное число, называемое его вероятностью и являющееся мерой возможного совершения этого события.

Современное построение теории вероятностей основывается на аксиоматическом подходе и опирается на элементарные понятия теории множеств.

Множество – это любая совокупность объектов произвольной природы, каждый из которых называется элементом множества. Множества обозначаются по-разному: или одной большой буквой или перечислением его элементов, данным в фигурных скобках, или указанием (в тех же фигурных скобках) правила, по которому элемент относится к множеству. Например, конечное множество М натуральных чисел от 1 до 100 может быть записано в виде

М = {1, 2, …,100} = {i - целое; 1 i 100}.

Предположим, что производится некоторый опыт (эксперимент, испытание), результат которого заранее неизвестен, случаен. Тогда множество всех возможных исходов опыта представляет пространство элементарных событий, а каждый его элемент (один отдельный исход опыта) является элементарным событием. Любой набор элементарных событий (любое их сочетание) считается подмножеством (частью) множества и является случайным событием, т. е. любое событие А – это подмножество множества : А . Например, пространство элементарных событий при бросании игральной кости составляет шесть возможных исходов = {1, 2, 3, 4, 5, 6}. С учетом пустого множества , которое вообще не содержит элементов, в пространстве может быть выделено в общей сложности 2 6 = 64 подмножества:

; {1}; … ; {6}; {1, 2}; … ; {5, 6}; {1, 2, 3}; … ; .

В общем случае, если множество содержит n элементов, то в нем можно выделить 2 n подмножеств (событий).

Рассматривая событие (ведь каждое множество есть свое собственное подмножество), можно отметить, что оно является достоверным событием, т. е. осуществляется при любом опыте. Пустое множество как событие является невозможным , т. е. при любом опыте заведомо не может произойти. Для предыдущего примера: достоверное событие = {1, 2, 3, 4, 5, 6} = {выпадение одного из шести очков}; невозможное событие = {7} = {выпадение 7 очков при одном бросании игральной кости}.

Совместные (несовместные) события – такие события, появление одного из которых не исключает (исключает) возможности появления другого.

Зависимые (независимые) события – такие события, появление одного из которых влияет (не влияет) на появление другого события.

Противоположное событие относительно некоторого выбранного события А – событие, состоящее в не появлении этого выбранного события (обозначается ).

Полная группа событий – такая совокупность событий, при которой в результате опыта должно произойти хотя бы одно из событий этой совокупности. Очевидно, что события А и составляют полную группу событий.

Одна из причин применения теории множеств в теории вероятностей заключается в том, что для множеств определены важные преобразования, которые имеют простое геометрическое представление и облегчающее понимание смысла этих преобразований. Оно носит название диаграммы Эйлера-Венна, и на ней пространство изображается в виде прямоугольника, а различные множества – в виде плоских фигур, ограниченных замкнутыми линиями. Пример диаграммы, иллюстрирующей включение множеств C B А , приведен на рис. 1.

Видно, что B является подмножеством А , а C – подмножеством B (и одновременно подмножеством А ).

II.2. 2. Алгебра событий.

В прикладных задачах основными являются не прямые, а косвенные методы вычисления вероятностей интересующих нас событий через вероятности других, с ними связанных. Для этого нужно уметь выражать интересующие нас события через другие, т. е. использовать алгебру событий.

Отметим, что все вводимые ниже понятия справедливы тогда, когда события о которых идет речь, представляют собой подмножества одного и того же пространства элементарных событий .

Сумма или объединение событий А 1 , А 2 , …, Аn – такое событие А , появление которого в опыте эквивалентно появлению в том же опыте хотя бы одного из событий А 1 , А 2 , …, Аn . Сумма обозначается:

где - знак логического сложения событий, - знак логической суммы событий.

Произведение или пересечение событий А 1 , А 2 , …, Аn – такое событие А , появление которого в опыте эквивалентно появлению в том же опыте всех событий А 1 , А 2 , …, Аn одновременно. Произведение обозначается

где - знак логического умножения событий, - знак логического произведения событий.

Операции сложения и умножения событий обладают рядом свойств, присущих обычным сложению и умножению, а именно: переместительным, сочетательным и распределительным свойствами, которые очевидны и не нуждаются в пояснении.

Диаграммы Эйлера-Венна для суммы (а) и произведения (б) двух событий А 1 и А 2 приведены на рис. 2.

Суммой (объединением) событий А 1 и А 2 является событие, состоящее в появлении хотя бы одного из этих событий (заштрихованная область на рис. 2, а). Произведение событий А 1 и А 2 это событие, состоящее в совместном выполнении обоих событий (заштрихованное пересечение событий А 1 и А 2 – рис. 2, б).

Из определения суммы и произведения событий следует, что

А = А А; А = А ; = А ;
А = АА ; = А ; А = А .

Если события Аi (i=1, … , n ) или { Аi } n i=1 составляют полную группу событий, то их сумма есть достоверное событие

Изображение противоположного события приведено на рис. 3. Область дополняет А до полного пространства . Из определения противоположного события следует, что

поясняемых рис. 4.

II.2. 3. Аксиомы теории вероятностей

Сопоставим каждому событию А число, называемое, как и прежде, его вероятностью и обозначаемое P(A) или P{A}. Вероятность выбирают так, чтобы она удовлетворяла следующим условиям или аксиомам:

P( ) = 1; P( ) = 0.

P( ) P(A) P( ).

Если Ai и Aj несовместные события, т. е. Ai Aj = , то

С помощью аксиом можно вычислить вероятности любых событий (подмножеств пространства ) с помощью вероятностей элементарных событий. Вопрос о том, как определить вероятности элементарных событий, является риторическим. На практике они определяются либо из соображений, связанных с возможными исходами опыта (например, в случае бросания монеты естественно считать вероятности выпадения орла или решки одинаковыми), или на основе опытных данных (частот).

Последний подход широко распространен в прикладных инженерных задачах, поскольку позволяет косвенно соотнести результаты анализа с физической реальностью.

Предположим, что в опыте пространство можно представить в виде полной группы несовместных и равновозможных событий А 1 , А 2 , …, Аn . Согласно (3) их сумма представляет достоверное событие:

так как события А 1 , А 2 , …, Аn несовместны, то согласно аксиомам (6) и (9):

= P() = 1.

Поскольку события А 1 , А 2 , …, Аn равновозможны, то вероятность каждого из них одинакова и равна

Отсюда непосредственно получается частотное определение вероятности любого события A:

как отношение числа случаев (m A ), благоприятных появлению события А , к общему числу случаев (возможному числу исходов опыта) n .

Совершенно очевидно, что частотная оценка вероятности есть не что иное как следствие аксиомы сложения вероятностей. Представив, что число n неограниченно возрастает, можно наблюдать явление, называемое статистическим упорядочением, когда частота события А все меньше изменяется и приближается к какому-то постоянному значению, которое и представляет вероятность события А .

II.2. 4. Основные правила теории вероятностей

Вероятности сложных событий можно вычислять с помощью вероятностей более простых, пользуясь основными правилами (теоремами): сложения и умножения вероятностей.

II.2.4.1. Теорема сложения вероятностей.

Если А 1 , А 2 , …, Аn - несовместные события и А – сумма этих событий, то вероятность события А равна сумме вероятностей событий А 1 , А 2 , …, Аn :

Чтобы сформулировать в общем случае теорему умножения вероятностей, введем понятие условной вероятности.

Условная вероятность события А 1 при наступлении события А 2 – вероятность события А 1 , вычисленная в предположении, что событие А 2 произошло:

Для любого конечного числа событий теорема умножения имеет вид

а для конечного числа n независимых событий

Следствием правил сложения и умножения вероятностей является теорема о повторении опытов (схема Бернулли): опыты считаются независимыми, если вероятность того или иного исхода каждого из них не зависит от того, какие исходы имели другие опыты.

Пусть в некотором опыте вероятность события А равна P(А) = p, а вероятность того, что оно не произойдет P( ) = q, причем, согласно (13)

P (A ) + P () = p + q = 1

Если проводится n независимых опытов, в каждом из которых событие А появляется с вероятностью p, то вероятность того, что в данной серии опытов событие А появляется ровно m раз, определяется по выражению

где - биномиальный коэффициент.

Например, вероятность однократной ошибки при чтении 32-разрядного слова в формате ЭВМ, представляющего комбинацию 0 и 1, при вероятности ошибки чтения двоичного числа p = 10 -3 , составляет по (19)

где q = 1- p = 0,999; n = 32; m = 1.

Вероятность отсутствия ошибки чтения при m = 0, C 0 32 = 1

Часто возникают задачи определения вероятностей того, что некоторое событие А произойдет по меньшей мере m раз или не более m раз. Подобные вероятности определяются сложением вероятностей всех исходов, которые составляют рассматриваемое событие.

Расчетные выражения для такого типа ситуаций имеют вид:

где P n (i) определяется по (19).

При больших m вычисление биномиальных коэффициентов C n m и возведение в большие степени p и q связано со значительными трудностями, поэтому целесообразно применять упрощенные способы расчетов. Приближение, называемое теоремой Муавра-Лапласа , используется, если npq>>1 , а |m-np|<(npq) 0,5 , в таком случае выражение (19) записывается:

II.2. 5. Формула полной вероятности и формула Байеса (формула вероятностей гипотез)

В практике решения большого числа задач формула полной вероятности (ФПВ) и формула Байеса, являющиеся следствием основных теорем, находят широкое применение.

II.2.5.1.Формула полной вероятности.

Если по результатам опыта можно сделать n исключающих друг друга предположений (гипотез) H 1 , H 2 , … H n , представляющих полную группу несовместных событий (для которой ), то вероятность события А , которое может появиться только с одной из этих гипотез, определяется:

P(A) = P(Hi ) P(A Hi ),

где P(Hi) – вероятность гипотезы Hi ;

P(А| Hi) – условная вероятность события А при гипотезе Hi.

Поскольку событие А может появиться с одной из гипотез H 1 , H 2 , … H n , то А = АH 1 H 2 АH n , но H 1 , H 2 , … H n несовместны, поэтому

В виду зависимости события А от появления события (гипотезы) Hi

P(AHi) = P(Hi)· P(А| Hi) , откуда и следует выражение (21).

II.2.5.2. Формула Байеса (формула вероятностей гипотез).

Если до опыта вероятности гипотез H 1 , H 2 , … H n были равны P(H 1 ), P(H 2 ), …, P(Hn) , а в результате опыта произошло событие А , то новые (условные) вероятности гипотез вычисляются:

Доопытные (первоначальные) вероятности гипотез P(H 1 ), P(H 2 ), …, P(Hn) называются априорными , а послеопытные - P(H 1 | А), … P(Hn| А) апостериорными .

Формула Байеса позволяет «пересмотреть» возможности гипотез с учетом полученного результата опыта.

Доказательство формулы Байеса следует из предшествующего материала. Поскольку P(Hi А) = P(Hi) P(А| Hi) = P(Hi) P(Hi| А): . Более подробный материал из теории вероятностей читатель может получить в Приложении: «Основные понятия и краткие сведения из теории вероятностей» . 2. Основные сведения о математических моделях расчета в теории вероятностей ...

  • Учебное пособие

    сведений о социально- ... теории измерений. Обычно из теории идет речь. Краткая история теории ... продвижение. Перейдем к основному понятию теории вероятностей понятию вероятности события. В...

  • Теория принятия решений учебное пособие - м издательство " март" 2004

    Учебное пособие

    Информация – совокупность сведений о социально- ... теории измерений. Обычно из контекста понятно, о какой конкретно теории идет речь. Краткая история теории ... продвижение. Перейдем к основному понятию теории вероятностей понятию вероятности события. В...

  • ОСНОВНЫЕ НАУЧНЫЕ РАЗРАБОТКИ (2)

    Документ

    В учебном пособии кратко изложены с позиций функциональной... терминов и понятий , список рекомендуемой... пособии в представлены основные факты и теории основных направлений и разделов... комбинаторики, начальные сведения из теории вероятностей , неравенства с...

  • П Р О Г Р А М М А вступительных экзаменов в аспирантуру по специальности 25 00 16 «Горнопромышленная и нефтегазопромысловая геология геофизика маркшейдерское дело и геометрия недр»

    Автореферат диссертации

    4. Корреляционные характеристики геофизических полей Основные понятия теории случайных процессов. Математическое ожидание, ... интерполяции и сплайн интерполяции. 4. Краткие сведения из теории вероятности и математической статистики. Случайные события. ...

  • 2.1. Выбор математического аппарата теории надежности

    Сделанное выше определение надежности явно недоста­точно, так как оно носит лишь качественный характер и не позволяет решать различные инженерные задачи в процессе проектирования, изготовления, испытания и эксплуатации авиационной техники. В частности, оно не позволяет решать такие важные задачи, как, например:

    Оценивать надежность (безотказность, восстанавливае­мость, сохраняемость, готовность и долговечность) существую­щих и создающихся новых конструкций;

    Сравнивать надежность разнотипных элементов и си­стем;

    Оценивать эффективность восстановления неисправных самолетов;

    Обосновывать планы ремонта и состав запасных частей, потребных для обеспечения планов летной работы;

    Определять объем, периодичность, стоимость выполне­ния подготовок к полету, регламентных работ и всего комп­лекса технического обслуживания;

    Определять затраты времени, снл и средств, потребные для восстановления неисправных технических устройств.

    Трудность определения количественных характеристик на­дежности вытекает из самой природы отказов, каждый из ко­торых является результатом совпадения ряда неблагоприят­ных факторов, таких, как, например, перегрузки, местные отклонения от расчетных режимов работы элементов и си­стем, изъяны материалов, изменение внешних условий и др., обладающих причинными связями разной степени и разной природы, вызывающих внезапные концентрации нагрузок, пре­вышающих расчетную нагрузку.

    Отказы авиационной техники зависят от многих причин, in поддающихся предварительной оценке с точки зрения их чычимости как первостепенные или второстепенные. Это по — чюляет рассматривать число отказов и время их появления 1 качестве случайных величин, т. е. величин, которые в зави — пмости от случая могут принимать различные значения, при — м ыранее неизвестно какие именно.

    Установление количественных зависимостей классически — III методами при такой сложной ситуации практически не — 1к 11 можно, так как многочисленные второстепенные случай­ные факторы играют такую заметную роль, что выделить пер­вое м’пенные, главные факторы из множества других нельзя. Кроме того, применение только классических методов ис — ’ ледования, основанных на рассмотрении вместо явления его прощенной и идеализированной модели, построенной на учете. ишь главных факторов и пренебрежении второстепенными, всегда дает верный результат.

    Полому для изучения таких явлений в настоящее время при достигнутом уровне развития науки и техники лучшим обрн юм могут быть использованы теория вероятностей и ма — | емн і нческая статистика - науки, изучающие закономернос — III в случайных явлениях и в некоторых случаях хорошо до — IIі>’111)110111110 классические методы.

    К цоегоннетнам этих методов следует отнести следующие і рн обе юя гельегна:

    І) сіаіін’іірнч’кііе методы, не раскрывая индивидуальных її и причин пі лглыюго отказа, устанавливают вместо

    ……… і. і рvniiiiiHи о pc iyиі. і.іга массовой эксплуатации с

    Mill…………. (ІКНІМО (игрой І носімо) в УСЛОВИЯХ

    " in in hi і " її і ими ‘іпм і причин;

    ‘ І "і ими) ні і ii’ii kii методов полученные резуль-

    1 » ……… і і ими поиски м подои соответствуют всему

    1 .. пік» pcarn. in. iK уїловин эксплуатации, а не той или мі шріїїНініїоїі и сильно упрощенной схеме; м І..І основании массовых наблюдений за появлением от­ит і і. июни і ся возможным выявить общие закономерности, инженерный анализ которых открывает путь для повышения ПНДІ кносш авиационной техники в процессе ее создания и но иержанни на заданном уровне в процессе эксплуатации.

    Указанные достоинства этого математического аппарата делают его пока единственно приемлемым для исследования допросов надежности авиационной техники. Вместе с тем, в практике следует учитывать специфические ограничения, при­зі

    сущие статистическим методам, которые не могут дать ответа на вопрос, будет ли данное техническое устройство функциони­ровать безотказно на протяжении интересующего нас периода или нет. Эти методы дают возможность только определить ве­роятность безотказной работы того или иного экземпляра авиационной техники и оценить риск того, что за интересую­щий нас период эксплуатации произойдет отказ.

    Выводы, полученные статистическим путем, всегда опира­ются на прошлый опыт эксплуатации авиационной техники, а поэтому оценка будущих отказов будет строгой лишь при до­статочно точном совпадении всего комплекса условий эксплу­атации (режимы работы, условия хранения).

    Для анализа и оценки восстанавливаемости и готовности авиационной техники к полету также применяют эти мето­ды, используя закономерности теории массового обслужива­ния и особенно некоторые разделы теории восстановления.


    Содержание
    Введение 3
    1. История возникновения 4
    2. Возникновение классического определения вероятности 9
    3. Предмет теории вероятности 11
    4. Основные понятия теории вероятности 13
    5. Применение теории вероятностей в современном мире 15
    6. Вероятность и воздушный транспорт 19 Заключение 20
    Список литературы 21


    Введение

    Случай, случайность - с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места для математики, но и здесь наука обнаружила интересные закономерности - они позволяют человеку уверенно чувствовать себя при встрече со случайными событиями.
    Теорию вероятностей можно определить как раздел математики, в котором изучаются закономерности присущие случайным событиям. Методы теории вероятностей широко применяются при математической обработке результатов измерений, а также во многих задачах экономики, статистики, страхового дела, массового обслуживания. Отсюда не трудно догадаться, что и в авиации теория вероятностей находит очень широкое применение.
    Моя будущая диссертационная работа будет связана со спутниковой навигацией. Не только в спутниковой навигации, но и в традиционных средствах навигации, теория вероятностей получило очень широкое применение, потому что через вероятность количественно выражаются большинство эксплуатационно-технических характеристик радиотехнических средств.


    1. История возникновения

    Сейчас уже трудно установить, кто впервые поставил вопрос, пусть и в несовершенной форме, о возможности количественного измерения возможности появления случайного события. Ясно одно, что мало-мальски удовлетворительный ответ на этот вопрос потребовал длительного времени и значительных усилий ряда поколений выдающихся исследователей. В течение долгого периода исследователи ограничивались рассмотрением разного рода игр, особенно игр в кости, поскольку их изучение позволяет ограничиваться простыми и прозрачными математическими моделями. Однако следует заметить, что многие отлично понимали то, что позднее было сформулировано Христианом Гюйгенсом: «...я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории».
    Мы увидим, что при дальнейшем прогрессе теории вероятностей глубокие соображения как естественнонаучного, так и общефилософского характера играли большую роль. Эта тенденция продолжается и в наши дни: мы постоянно наблюдаем, как вопросы практики - научной, производственной, оборонной - выдвигают перед теорией вероятностей новые проблемы и приводят к необходимости расширения арсенала идей, понятий и методов исследования.
    Развитие теории вероятностей, а с нею и развитие понятия вероятности, можно разбить на следующие этапы.
    1. Предыстория теории вероятностей. В этот период, начало которого теряется в веках, ставились и решались элементарные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает. Этот период кончается работами Кардано, Пачоли, Тарталья и др.
    С вероятностными представлениями мы встречаемся еще в античности. У Демокрита, Лукреция Кара и других античных ученых и мыслителей мы есть глубокие предвидения о строении материи с беспорядочным движением мелких частиц (молекул), рассуждения о равновозможных исходах и т.п. Еще в древности делались попытки сбора и анализ некоторых статистических материалов – все это(а так же и другие проявления внимания к случайным явлениям)создавало почву для выработки новых научных понятий, в том числе и понятия вероятности. Но античная наука не дошла до выделения этого понятия.
    В философии вопрос о случайном, необходимом и возможном всегда был одним из основных. Философская разработка этих проблем также оказала влияние на формирование понятия вероятности. В целом в средневековье наблюдается только разрозненные попытки размыслить встречающиеся вероятностные рассуждения.
    В работах Пачоли, Тарталья и Кардано уже делается попытка выделить новое понятие – отношение шансов – при решении ряда специфических задач, прежде всего комбинаторных.
    2. Возникновение теории вероятности как науки. К середине XVII в. вероятностные вопросы и проблемы, возникающие в статистической практике, в практике страховых обществ, при обработке результатов наблюдения и в других областях, привлекли внимание ученых, так как они стали актуальными вопросами. В первую очередь этот период связан с именами Паскаля, Ферма и Гюйгенса. В этот период вырабатываются специфические понятия, такие как математическое ожидание и вероятность (как отношение шансов), устанавливаются и используются первые свойства вероятности: теоремы сложения и умножения вероятностей. В это время теорема вероятностей находит применение в страховом деле, демографии, в оценке ошибок наблюдения, широко используя при этом понятие вероятности.
    3. Следующий период начинается с появления работы Бернулли «Искусство предположений» (1713 г.), в которой в первые была доказана первая предельная теорема – простейший случай закона больших чисел. К этому периоду, который продолжался до середины XIX в., относятся работы Муавра, Лапласа, Гаусса и др. В центре внимания в это время стоят предельные теоремы. Теория вероятностей начинает широко применяться в различных областях естествознания. И хотя в этот период начинают применяться различные понятия вероятности (геометрическая вероятность, статистическая вероятность), господствующее положение занимает классическое определение вероятности.
    4. Следующий период развития теории вероятностей связан прежде всего с Петербургской математической школой. За два столетия развития теории вероятностей главными её достижениями были предельные теоремы, но не были выяснены границы их применения и возможности дальнейшего обобщения. Наряду с успехами были выявлены и существенные недостатки в её обосновании, это выражено в недостаточно четком представлении о вероятности. В теории вероятности создалось положение, когда дальнейшее её развитие требовало уточнения основных положений, усиления самих методов исследования.
    Это было осуществлено русской математической школой во главе с Чебышевым. Среди её крупнейших представителей Маркова и Ляпунова.
    В этот период в теорию вероятностей входят оценки приближений предельных теорем, а так же происходит расширение класса случайных величин, подчиняющихся предельным теоремам. В это время в теории вероятностей начинают рассматривать некоторые зависимые случайные величины (цепи Маркова). В теории вероятности возникают новые понятия, как «теория характеристических функций», «теория моментов» и др. И в связи с этим она получило широкое распространение в естественных науках, в первую очередь это относиться к физике. В этот период создается статистическая физика. Но это внедрение вероятностных методов и понятий в физику шло в довольно большом отрыве от достижений теории вероятностей. Вероятности, применяемые в физике, были не совсем теми же, как в математике. Существующие понятия вероятности не удовлетворяли потребностей естественных наук и в результате этого начали возникать различные трактовки вероятности, которые были трудно сводимы к одному определению.
    Развитие теории вероятностей в начале XIX в. Привело к необходимости пересмотра и уточнения её логических основ, в первую очередь понятия вероятности. Это требовало развития физики и применения в ней вероятностных понятий и аппарата теории вероятностей; ощущалось неудовлетворенность классического обоснования лапласовского типа.
    5. Современный период развития теории вероятностей начался с установления аксиоматики (аксиоматика - система аксиом какой-либо науки). Этого в первую очередь требовала практика, так как для успешного применения теории вероятностей в физике, биологии и других областях науки, а так же в технике и военном деле необходимо было уточнить и привести в стройную систему её основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с теорией множеств. Это обусловило широту исследований по теории вероятностей.
    Первые работы этого периода связаны с именами Бернштейна, Мизеса, Бореля. Окончательное установление аксиоматики произошло в 30-е годы XX в. Анализ тенденций развития теории вероятностей позволил Колмогорову создать общепринятую аксиоматику. В вероятностных исследованиях аналогии с теорией множеств начали играть существенную роль. Идеи метрической теории функций все глубже стали проникать в теорию вероятностей. Возникла потребность в аксиоматизации теории вероятностей исходя из теоретико-множественных представлений. Такая аксиоматика и была создана Колмогоровым и способствовала тому, что теория вероятностей окончательно укрепилась как полноправная математическая наука.
    В этот период понятие вероятности проникает почти во все во все сферы человеческой деятельности. Возникают самые различные определения вероятности. Многообразие определений основных понятий - существенная черта современной науки. Современные определения в науке - это изложение концепций, точек зрения, которых может быть много для любого фундаментального понятия, и все они отражают какую-нибудь существенную сторону определяемого понятия. Это относится и к понятию вероятности.


    2. Возникновение классического определения вероятности

    Понятие вероятности играет громадную роль в современной науке, а тем самым является существенным элементом современного мировоззрения в целом, современной философии. Все это порождает внимание и интерес к развитию понятия вероятности, которое тесно связано с общим движением науки. На понятия вероятности оказали существенное влияние достижения многих наук, но и это понятие в свою очередь заставляло их уточнять подход к исследованию миру.
    Образование основных математических понятий представляет важные этапы в процессе математического развития. До конца XVII века наука так и не подошла к введению классического определения вероятности, а продолжала оперировать только с числом шансов, благоприятствующих тому или иному интересующему исследователей событию. Отдельные попытки, которые были отмечены у Кардано и у позднейших исследователей, не привели к ясному пониманию значения этого нововведения и остались инородным телом в завершенных работах. Однако, в тридцатых годах XVIII столетия классическое понятие вероятности стало общеупотребительным и никто из ученых этих лет не мог бы ограничиться только подсчетом числа благоприятствующих событию шансов. Введение классического определения вероятности произошло не в результате однократного действия, а заняло длительный промежуток времени, на протяжении которого происходило непрерывное совершенствование формулировки, переход от частных задач к общему случаю.
    Внимательное изучение, показывает, что еще в книге X. Гюйгенса «О расчетах в азартных играх» (1657) нет понятия вероятности как числа, заключенного между 0 и 1 и равного отношению числа благоприятствующих событию шансов к числу всех возможных. А в трактате Я. Бернулли «Искусство предположений» (1713) понятие это введено, хотя и в далеко несовершенной форме, но, что особенно важно, широко используется.
    А. Муавр воспринял классическое определение вероятности, данное Бернулли, и вероятность события определил почти в точности так, как это делаем мы теперь. Он писал: «Следовательно, мы строим дробь, числитель которой будет число случаев появления события, а знаменатель - число всех случаев, при которых оно может появиться или не появиться, такая дробь будет выражать действительную вероятность его появления».


    3. Предмет теории вероятностей
    Наблюдаемые нами события (явления) можно подразделить на следующие три вида: достоверные, невозможные и случайные.
    Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий S. Например, если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.
    Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена совокупность условий S. Например, событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет, если будет осуществлена совокупность условий предыдущего примера.
    Случайным называют событие, которое при осуществлении совокупности условий S может либо произойти, либо не произойти. Например, если брошена монета, то она может упасть так, что сверху будет либо герб, либо надпись. Поэтому событие «при бросании монеты выпал «герб» - случайное. Каждое случайное событие, в частности выпадение «герба», есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, - она просто не в силах это сделать.
    По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т. е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий независимо от их конкретной природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.
    Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.


    4. Основные понятия теории вероятностей

    Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Такие основные понятия существуют и в теории вероятностей. В их качестве выступают: событие, вероятность события, частота события или статистическая вероятность и случайная величина.
    Случайными событиями называются такие события, которые могут произойти или не произойти при осуществлении совокупности условий, связанных с возможностью появления данных событий.
    Случайные события обозначают буквами A, B, C,... . Каждое осуществление рассматриваемой совокупности называется испытанием. Число испытаний может неограниченно возрастать. Отношения числа m наступлений данного случайного события A в данной серии испытаний к общему числу n испытаний этой серии называется частотой появления события A в данной серии испытаний (или просто частотой события А) и обозначается Р*(А). Таким образом, P*(A)=m/n.
    Частота случайного события всегда заключена между нулем и единицей: 0 ? P*(A) ? 1.
    Массовые случайные события обладают свойством устойчивости частоты: наблюдаемые в различных сериях однородных испытаний (с достаточно большим числом испытаний в каждой серии) значения частоты данного случайного события колеблются от серии к серии в довольно тесных пределах.
    Именно это обстоятельство позволяет при изучении случайных событий применять математические методы, приписывая каждому массовому случайному событию его вероятность, за которую принимается то (вообще говоря заранее неизвестное) число, около которого колеблется наблюдаемая частота события.
    Вероятность случайного события А обозначается через Р(А). Вероятность случайного события, как и его частота, заключена между нулем и единицей: 0 ? P(A) ? 1.

    Случайная величина – это величина, характеризующая собой результат предпринятой операции и которая может принимать различные значения при различных операциях, какими бы однородными были условия их осуществления.

    5. Применение теории вероятностей в современном мире
    Начать по праву следует со статистической физики. Современное естествознание исходит из представления, согласно которому все явления природы носят статистический характер и законы могут получить точную формулировку только в терминах теории вероятностей. Статистическая физика стала основой всей современной физики, а теория вероятностей – ее математическим аппаратом. В статистической физике рассматриваются задачи, которые описывают явления, определяющиеся поведение большого числа частиц. Статистическая физика весьма успешно применяется в самых разных разделах физики. В молекулярной физике с ее помощью объясняют тепловые явления, в электромагнетизме – диэлектрические, проводящие и магнитные свойства тел, в оптике она позволила создать теорию теплового излучения, молекулярного рассеивания света. В последние годы круг приложений статистической физики продолжает расширяться.
    Статистические представления позволили быстро оформить математическое изучение явлений ядерной физики. Появление радиофизики и изучение вопросов передачи радио сигналов не только усилили значение статистических концепций, но и привели к прогрессу самой математической науки – появлению теории информации.
    Понимание природы химических реакций, динамического равновесия также невозможно без статистических представлений. Вся физическая химия, ее математический аппарат и предлагаемые ею модели являются статистическими.
    Обработка результатов наблюдений, которые всегда сопровождаются и случайными ошибками наблюдений, и случайными для наблюдателя изменениями в условиях проведения эксперимента, еще в XIX столетии привела исследователей к созданию теории ошибок наблюдений, и эта теория полностью опирается на статистические представления.
    Астрономия в ряде своих разделов использует статистический аппарат. Звездная астрономия, исследование распределения материи в пространстве, изучение потоков космических частиц, распределение на поверхности солнца солнечных пятен (центров солнечной активности) и многое другое нуждается в использовании статистических представлений.
    Биологи заметили, что разброс размеров органов живых существ одного и того же вида прекрасно укладывается в общие теоретико-вероятностные законы. Знаменитые законы Менделя, положившие начало современной генетике, требуют вероятностно- статистических рассуждений. Изучение таких значительных проблем биологии, как передача возбуждения, устройство памяти, передача наследственных свойств, вопросы расселения животных на территории, взаимоотношения хищника и жертвы требует хорошего знания теории вероятностей и математической статистики.
    Гуманитарные науки объединяют очень разнообразные по характеру дисциплины – от языкознания и литературы до психологии и экономики. Статистические методы все в более значительной мере начинают привлекаться к историческим исследованиям, особенно в археологии. Статистический подход используется для расшифровки надписей на языке древних народов. Идеи, руководившие Ж. Шампольоном при расшифровке др евнего иероглифического письма , являются в основе своей статистическими. Искусство шифрования и дешифровки основано на использовании статистических закономерностей языка. Другие направления связаны с изучением повторяемости слов и букв, распределения ударений в словах, вычислением информативности языка конкретных писателей и поэтом. Статистические методы используются для установления авторства и изобличения литературных подделок. Например, авторство М.А. Шолохова по роману «Тихий Дон» было установлено с привлечением вероятностно-статистических методов. Выявление частоты появления звуков языка в устной и письменной речи позволяет ставить вопрос об оптимальном кодировании букв данного языка для передачи информации. Частота использования букв определяет соотношение количества знаков в наборной типографской кассе. Расположение букв на каретке пишущей машины и на клавиатуре компьютера, определяется статистическим изучением частоты сочетаний букв в данном языке.
    Многие проблемы педагогики и психологии также требуют привлечения вероятностно-статистического аппарата. Вопросы экономики не могут не интересовать общество, поскольку с ней связаны все аспекты ее развития. Без статистического анализа невозможно предвидеть изменение количества населения, его потребностей, характера занятости, изменения массового спроса, а без этого невозможно планировать хозяйственную деятельность.
    Непосредственно связаны с вероятностно- статистическими методами вопросы проверки качества изделий. Зачастую изготовление изделия занимает несравненно меньше времени, чем проверка его качества. По этой причине нет возможности проверить качество каждого изделия. Поэтому приходится судить о качестве партии по сравнительно небольшой части выборки. Статистические методы используются и тогда, когда испытание качества изделий приводит к их порче или гибели.
    Вопросы, связанные с сельским хозяйством, уже давно решаются с широким использованием статистических методов. Выведение новых пород животных, новых сортов растений, сравнение урожайности – вот далеко не полный список задач, решаемых статистическими методами.
    Можно без преувеличения сказать, что статистическими методами сегодня пронизана вся наша жизнь. В известном сочинении поэта-материалиста Лукреция Кара «О природе вещей» имеется яркое и поэтическое описание явления броуновского движения пылинок:
    «Вот посмотри: всякий раз, когда солнечный свет проникает
    В наши жилища и мрак прорезает своими лучами,
    Множества маленьких тел в пустоте, ты увидишь, мелькая,
    Мечутся взад и вперед в лучистом сиянии света;
    Будто бы в вечной борьбе они бьются в сраженьях и битвах.
    В схватки бросаются вдруг по отрядам, не зная покоя.
    Или сходясь, или врозь беспрерывно опять разлетаясь.
    Можешь из этого ты уяснить себе, как неустанно
    Первоначала вещей в пустоте необъятной мятутся.
    Так о великих вещах помогают составить понятье
    Малые вещи, пути намечая для из достиженья,
    Кроме того, потому обратить тебе надо вниманье
    На суматоху в телах, мелькающих в солнечном свете,
    Что из нее познаешь ты материи также движенье»

    Первая возможность экспериментального исследования соотношений между беспорядочным движением отдельных частиц и закономерным движением их больших совокупностей появилась, когда в 1827 году ботаник Р. Броун открыл явление, которое по его имени названо «броуновским движением». Броун наблюдал под микроскопом взвешенную в воде цветочную пыльцу. К своему удивлению он обнаружил, что взвешенные в воде частицы находятся в непрерывном беспорядочном движении, которое не удается прекратить при самом тщательном старании устранить какие либо внешние воздействия. Вскоре было обнаружено, что это общее свойство любых достаточно мелких частиц, взвешенных в жидкости. Броуновское движение – классический пример случайного процесса.


    6. Вероятность и воздушный транспорт
    В предыдущей главе мы рассмотрели применение теории вероятности и статистики в различных областях науки. В этой главе я бы хотела привести примеры применения теории вероятностей на воздушном транспорте.
    Воздушный транспорт - понятие, включающее как собственно воздушные суда, так и необходимую для их эксплуатации инфраструктуру: аэропорты, диспетчерские и технические службы. Как известно, совершение полета –это результат совместной работы множества служб аэропорта, которые в своей деятельности используют различные области науки и практически во всех этих областях имеет место теория вероятности. Я бы хотела привести пример из области навигации, где теория вероятности также широко применяется.
    В связи с развитием спутниковых систем навигации, посадки и связи были введены новые показатели надежности как целостность, непрерывность, и готовность системы. Все эти показатели надежности количественно выражаются через вероятность.
    Целостность-степень доверия к информации, получаемой от радиотехнической системы и применяемое в дальнейшем воздушным судном. Вероятность целостности равна произведению вероятности отказа на вероятность необнаружения отказа и должна быть равна или меньше 10 -7 на час полета.
    Непрерывность обслуживания – это способность полной системы выполнять свою функцию без прерывания режима работы при выполнении планируемой операции. Она должна быть не меньше 10 -4 .
    Готовность-это способность системы выполнять свои функции к началу выполнения операции. Онам должна быть не меньше 0, 99.
    Заключение
    Вероятностные идеи стимулируют в наши дни развитие всего комплекса знаний, начиная от наук о не живой природе и кончая науками об обществе. Прогресс современного естествознания неотделим от использования и развития вероятностных идей и методов. В наше время трудно назвать какую-либо область исследований, где бы не применялись вероятностные методы.


    Список литературы
    1. Вентцель Е.С. Теория вероятностей: Учебник для вузов. М.: Высшая школа, 2006 г.;
    2. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. М: Высшая школа, 1998 г.;
    3. Гнеденко Б.В. Очерк по теории вероятностей. М.: Эдиториал УРСС, 2009 г.;
    4. Майстров Л.Е. Развитие теории вероятностей. М.:Наука, 1980 г.;
    5. Майстров Л.Е. Теория вероятностей. Исторический очерк. М.: Наука, 1967 г.
    6. Соболев Е.В. Организация радиотехнического обеспечения полётов (часть 1). Санкт-Петербург, 2008 г.;
    7. http://verojatnost. pavlovkashkola.edusite.ru/ p8aa1.html
    8. http://shpora.net/index.cgi? act=view&id=4966