Параметры гиперболы. Что такое гипербола, примеры из литературы и повседневной жизни

Гипербола и ее свойства

Конспект лекции 14.

Гипербола и парабола и их свойства. Уравнения эллипса, гиперболы и параболы в полярной системе координат.

Литература. § 20, 21.

Определœение 1. Гиперболой принято называть множество точек плоскости, для каждой из которых модуль разности расстояний до двух фиксированных точек и, принадлежащих той же плоскости, является постоянной величиной, меньшей расстояния между точками и.

Точки и,как и в случае эллипса, будем называть фокусами . Очевидно, следует предполагать, что фокусы не совпадают друг с другом. Пусть, а модуль разности расстояний от точки гиперболы до фокусов равен. Тогда, как следует из определœения

Из неравенств, связывающих стороны треугольника, следует, что не существует таких точек М, для которых. Заметим, что эта разность равна в том и только в том случае, когда М лежит на прямой, и не принадлежит отрезку между фокусами. Будем также предполагать, что a ¹ 0, иначе, точки, удовлетворяющие этому условию, образуют серединный перпендикуляр отрезка.

Выведем уравнение гиперболы. Как и в случае эллипса введем прямоугольную декартовую систему координат, которую также будем называть канонической , ось абсцисс которой содержит фокусы и, а ось ординат совпадает с серединным перпендикуляром отрезка (рис. 67). В этой системе координаты фокусов равны: . Точка в том и только в том случае лежат на гиперболе, когда ее координаты удовлетворяют уравнению:

Упростим это уравнение. Раскроем модуль: , и ʼʼуединимʼʼ один из радикалов: . Возведем обе части полученного уравнения в квадрат:

После упрощений получим: . Еще раз возведем обе части в квадрат: , или

В силу неравенства (17.1) , в связи с этим существует число b , для которого

Тогда. Разделив обе части этого равенства на, окончательно получим:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, координаты любой точки гиперболы удовлетворяют уравнению (17.4). Покажем обратное. Возьмем произвольную точку, координаты которой являются решением этого уравнения. Пусть. Эти числа будем называть фокальными радиусами точки М. Нам следует показать, что. Из уравнения (17.4) следует, что

Так как, то, заменив в данном выражении у по формуле (17.6), получим:

Из формулы (17.3) следует, что. По этой причине. Таким образом,

Аналогично показывается, что

Раскроем модули в полученных формулах. Пусть. Тогда, в связи с этим. Из неравенства (17.5) следует, что. Так как, то перемножая эти неравенства, получим: . Отсюда следует, что. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, и.

Пусть. Тогда и. Из неравенства (17.5) следует, что, перемножая его с неравенством, получим: или. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, и. И в первом и во втором случаях модуль разности фокальных радиусов постоянен и равен. Уравнение (17.4) является уравнением гиперболы. Оно носит название канонического .

Рассмотрим свойства гиперболы, которые позволят построить ее изображение. Вначале найдем ее точки пересечения с осями канонической системы координат. Пусть точка служит точкой пересечения гиперболы с осью абсцисс. Тогда из уравнения (17.4) следует, что, ᴛ.ᴇ. либо, либо. Гипербола пересекается с осью абсцисс в двух точках: . Она не пересекает оси ординат. Действительно, в случае если точка лежит на гиперболе, то число удовлетворяет уравнению: , ĸᴏᴛᴏᴩᴏᴇ не имеет действительных корней. Точки и называются вершинами гиперболы, а числа а и b ‑ ее действительной и мнимой полуосями .

В случае если точка лежит на гиперболе, то, как следует из ее канонического уравнения, точки и также лежат на гиперболе. Отсюда следует, что гипербола симметрична, относительно осœей и центрально симметрична относительно начала канонической системы координат. По этой причине достаточно построить точки гиперболы, лежащие в первой координатной четверти, а затем отразить их симметрично относительно осœей и начала системы координат. Из формулы (17.6) следует, что в этой четверти гипербола совпадает с графиком функции. Средствами математического анализа доказывается, что при эта функция является непрерывной, гладкой и возрастающей. Вместе с тем, она имеет асимптоту. Как доказывается в курсе математического анализа, прямая тогда и только тогда служит асимптотой функции при, когда В данном случае

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, прямая ‑асимптота гиперболы в первой координатной четверти. Так как гипербола симметрична относительно координатных осœей, то эта же прямая служит ее асимптотой в третьей четверти, а прямая ‑ ее асимптота во второй и четвертой четвертях. Гипербола изображена на рисунке 67.

Укажем способ построения точек гиперболы циркулем и линœейкой. Пусть и ‑ ее фокусы, и - точки пересечения с осью абсцисс. Построим окружность a с центром в точке радиуса r . Далее увеличим раствор циркуля на длину отрезка и построим окружность b с центром в точке с радиусом. Ясно, что точки пересечения окружностей a и b лежат на гиперболе. Меняя радиус r можно построить любое число точек гиперболы (рис. 68).

Гипербола, аналогично тому, как и эллипс, обладает директориальным свойством.

Определœение 2. Под эксцентриситетом гиперболы принято понимать число, равное:

Из неравенства (17.1) следует, что для гиперболы (сравните, для эллипса эксцентриситет меньше единицы). Выясним, как меняется форма гиперболы, в случае если ее эксцентриситет принимает значения от 1 до + .. Тогда из формулы (17.9) получим: . Пусть e ® 1, тогда a ® c . Как мы уже отмечали, в данном случае гипербола "сжимается", ее ветви приближаются к двум лучам оси абсцисс, начала которых лежат в ее фокусах. При a ® 0 ветви гиперболы "распрямляются" к серединному перпендикуляру отрезка, ᴛ.ᴇ. к оси ординат.

Определœение 3. Прямые, определœенные уравнениями:

называются директрисами гиперболы.

Считается, что директриса соответствует фокусу, а - фокусу. Так как, то. По этой причине директрисы пересекают ось абсцисс во внутренних точках отрезка, заключенного между вершинами гиперболы (рис. 69). Докажем директориальное свойство гиперболы.

Теорема. Гипербола представляет собой множество всœех точек плоскости, для каждой из которых отношение расстояния от этой точки до фокуса к расстоянию до директрисы, соответствующей этому фокусу, является постоянным числом, равным эксцентриситету.

Доказательство. Пусть дана гипербола. Будем предполагать, что на плоскости выбрана ее каноническая система координат. Рассмотрим точку, лежащую на гиперболе. Обозначим через и ее расстояния до директрис и. Из формулы для вычисления расстояния от точки до прямой (см. § 14) следует, что, . Найдем отношения и, где и ‑ фокальные радиусы точки М . Из равенств (17.7) - (17.9), получим: и. По этой причине.

Покажем обратное. Пусть отношение расстояния от некоторой точки М до фокуса гиперболы к расстоянию от нее до соответствующей директрисы равно эксцентриситету. Проверим, что точка лежит на гиперболе. Доказательство проведем для фокуса и директрисы. Для вторых фокусов и директрисы рассуждения проводятся аналогично. Пусть даны координаты точки: . Тогда. Расстояние до директрисы равно: . Так как, то. Отсюда

Так как (см. (17.3)), то, или. Точка М принадлежит гиперболе, теорема доказана.

Директориальные свойства эллипса и гиперболы позволяют иначе подойти к определœению этих кривых. Из доказанных теорем следует, что если на плоскости даны прямая (директриса) и точка (фокус), которая не лежит на этой прямой, то множество всœех точек плоскости, для каждой из которых отношение расстояния до фокуса к расстоянию до директрисы, равно постоянному числу, представляет собой эллипс, в случае если это число меньше единицы, и гиперболу, в случае если оно больше единицы. Ответ на вопрос, какой вид имеет это множество, в случае если отношение равно единице, будет дан в следующем параграфе.

Ответим на вопрос, какой вид имеет множество точек, для каждой из которых отношении расстояния до точки к расстоянию до прямой, не содержащей эту точку, равно единице. Мы покажем, что такое множество точек хорошо известно из школьного курса алгебры, оно совпадает с параболой.

Определœение 1. Множество точек плоскости, для каждой из которых расстояние до фиксированной точки плоскости равно расстоянию до фиксированной прямой, не содержащей эту точку, принято называть параболой.

Точку и прямую, которые упомянуты в определœении, будем называть соответственно фокусом и директрисой параболы. Будем также считать, что эксцентриситет параболы равен единице. Нетрудно узнать, что представляет собой множество точек, удовлетворяющих определœению 1, в случае если фокус лежит на директрисе. В случае если F - фокус, d ‑ директриса, а М - точка множества, то в данном случае отрезок FM перпендикулярен d . По этой причине такое множество совпадает с прямой, проходящей через фокус перпендикулярной директрисе.

Выведем уравнение параболы. Для этого выберем прямоугольную декартовую систему координат так, чтобы ось абсцисс проходила через фокус F и была перпендикулярна даректрисе d параболы, а ее начало О совпадало с серединой отрезка, заключенного между F и точкой Q пересечения оси абсцисс и директрисы. Направление оси абсцисс определяется вектором (рис. 71). Такую систему координат будем называть канонической . Обозначим через p длину отрезка FQ , Число р принято называть фокальным параметром параболы. Тогда в канонической системе координаты фокуса F и уравнение директрисы d имеет вид: ,

Рассмотрим произвольную точку. расстояние р от М до F равно: . Длина перпендикуляра d, опущенного из M на директрису d , согласно формуле для вычисления расстояния от точки до прямой (см § 14), имеет вид: . По этой причине из определœения 1 следует, что точка М в том и только в том случае лежит на параболе, когда

Уравнение (18.1) представляет собой уравнение параболы. Нам крайне важно его упростить. Для этого возведем обе части в квадрат:

Отсюда следует, что

После приведения подобных членов, получим:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в случае если точка принадлежит параболе, то ее координаты удовлетворяют уравнению (18.4). Нетрудно убедиться в обратном. В случае если координаты точки М служат решением уравнения (18.4), то они удовлетворяют уравнениям (18.3) и (18.2). Извлекая квадратный корень из обеих частей равенства (18.2), получим, что координаты точки М удовлетворяют (18.1). Точка лежит на параболе.

Уравнение (18.4) носит название канонического уравнения параболы. Отметим ее свойства. Начало О канонической системы координат лежит на параболе, так как ‑ решение уравнения (18.4). Она принято называть ее вершиной. Парабола симметрична относительно оси абсцисс и не симметрична относительно оси ординат канонической системы. Действительно, в случае если координаты точки удовлетворяют уравнению (18.4), то координаты точки также удовлетворяют уравнению (18.4), а координаты точки не являются решением этого уравнения. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для построения параболы достаточно изобразить график степенной функции, а затем отобразить его симметрично относительно оси абсцисс. Средствами математического анализа доказывается, что она непрерывная, гладкая и бесконечно возрастающая функция. Парабола изображена на рисунке 71.

Рассмотрим способ построения точек параболы. Пусть F - ее фокус, а d - директриса. Проведем ось симметрии параболы, ᴛ.ᴇ. прямую l , содержащую F и перпендикулярную d . Далее построим несколько прямых перпендикулярных оси. На каждой прямой определим две точки пересечения с окружностью, центр которой находится в фокусе F , а радиус равен расстоянию между этой прямой и директрисой (см. рис. 72). Ясно, что эти точки лежат на параболе.

Пусть кривая g представляет собой эллипс, одну ветвь гиперболы, либо параболу. Пусть F - фокус, а d - директриса кривой g, соответствующая этому фокусу. При этом будем предполагать, что в случае гиперболы фокус и директриса выбраны так, что рассматриваемая ветвь кривой лежит в той же полуплоскости относительно d, что и фокус F . Будем также предполагать, что полюс полярной системы координат совпадает с F, a полярная ось l - лежит на оси симметрии и не пересекает директрису d (рис. 74). Восставим в точке F перпендикуляр к l , Р - точка его пересечения с γ. Обозначим через р длину отрезка . Число р будем называть фокальным параметром g.

Обозначим через r и j - полярные координаты точки М . Напомним, что в нашем случае, а j - ориентированный угол между полярной осью l и вектором. Обозначим через Q и N проекции точек Р и М на директрису d , а через К ‑ проекцию М на ось симметрии кривой g (см. рис. 74). Тогда, в случае если R - точка пересечения директрисы d и оси симметрии l , то Так как проекция на l имеет вид: , а, то. Воспользуемся директориальным свойством кривой второго порядка. В случае если e - эксцентриситет g, то. По этой причине, а. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, . Помножив это соотношение на e и выделив r, окончательно получим:

Уравнение (18.6) принято называть полярным уравнением кривой второго порядка g.

Пусть e < 1. Тогда g представляет собой эллипс. В этом случае для любого j: . Так как полярный радиус всœегда положителœен, то для любого угла φ существует значение, ρ определяемое формулой (18.6), для которого точка M (r; j) лежит на эллипсе. Любой луч с началом в полюсе полярной системы координат пересекает эллипс (рис. 75). В случае если e = 1, то g представляет собой - параболу. В этом случае для любого j: , причем при j = 0. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в уравнении (18.6) j принимает всœе значения на полуинтервале (- p; p] , за исключением 0. Любой луч с началом в фокусе F , за исключением полярной оси, пересекает параболу (рис. 76). Рассмотрим случай, когда e > 1. Тогда g представляет собой ветвь гиперболы. Как следует из уравнения (18.6), угол j удовлетворяет неравенству. Отсюда

Решим это неравенство. Пусть. Так как, то. Воспользуемся формулами, выражающими эксцентриситет гиперболы через ее полуоси и расстояние между фокусами (см. § 17), получим: , ᴛ.ᴇ. . Нетрудно видеть, что j является решением неравенства (18.7) в том и только в том случае, когда, . Геометрически это означает, что если угол φ принадлежит отрезку [ ; ], то луч, составляющий угол j с полярной осью и с началом в фокусе F, не пересекает ветвь гиперболы. Отметим, что лучи, образующие с полярной осью углы, равные и, параллельны асимптотам гиперболы (рис. 77). Можно доказать, что если на плоскости введены обобщенные полярные координаты (см. § 9), то уравнение (18.6) в случае задает вторую ветвь гиперболы.

Гипербола и ее свойства - понятие и виды. Классификация и особенности категории "Гипербола и ее свойства" 2017, 2018.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек иесть величина постоянная, меньшая расстояниямежду этими заданными точками (рис.3.40,а). Это геометрическое определение выражаетфокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки иназываются фокусами гиперболы, расстояниемежду ними - фокусным расстоянием, серединаотрезка- центром гиперболы, число- длиной действительной оси гиперболы (соответственно,- действительной полуосью гиперболы). Отрезкии, соединяющие произвольную точкугиперболы с ее фокусами, называются фокальными радиусами точки. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение , где, называетсяэксцентриситетом гиперболы . Из определения следует, что.

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точкик точке); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координатоказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов и. Для произвольной точки, принадлежащей гиперболе, имеем:

Записывая это уравнение в координатной форме, получаем:

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

где , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии от нее (рис.3.41,а). При, когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки(фокуса) к расстоянию до заданной прямой(директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету(директориальное свойство гиперболы ). Здесь и- один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса и директрисы(рис.3.41,а) условиеможно записать в координатной форме:

Избавляясь от иррациональности и заменяя , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокусаи директрисы:

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат (рис.3.41,б) имеет вид

, где -фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус гиперболы, а в качестве полярной оси - луч с началом в точке, принадлежащий прямой, но не содержащий точки(рис.3.41,б). Тогда для произвольной точки, принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем. Выражаем расстояние между точкамии(см. пункт 2 замечаний 2.8):

Следовательно, в координатной форме уравнение гиперболы имеет в

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

Выражаем полярный радиус и делаем замены:

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (для гиперболы,для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение , находим абсциссы точек пересечения:. Следовательно, вершины имеют координаты. Длина отрезка, соединяющего вершины, равна. Этот отрезок называется действительной осью гиперболы, а число- действительной полуосью гиперболы. Подставляя, получаем. Длина отрезка оси ординат, соединяющего точки, равна. Этот отрезок называется мнимой осью гиперболы, а число- мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат(рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид(гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

Подставляя эти выражения в уравнение равносторонней гиперболы и приводя подобные члены, получаем

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии. Действительно, если точка принадлежит гиперболе. то и точкии, симметричные точкеотносительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси (при).

5. Эксцентриситет характеризует форму гиперболы. Чем больше, тем шире ветви гиперболы, а чем ближек единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника:. Учитывая,чтои, получаем

Чем больше , тем больше угол. Для равносторонней гиперболыимееми. Дляуголтупой, а дляуголострый (рис.3.43,а).

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями иназываютсясопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы приводится к каноническому при помощи переименования координатных осей (3.38).7. Уравнение определяет гиперболу с центром в точке, оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнениеопределяет сопряженную гиперболу с центром в точке.

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

где - гиперболический косинус, aгиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству .

Пример 3.21. Изобразить гиперболу в канонической системе координат. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: - действительная полуось,- мнимая полуось гиперболы. Строим основной прямоугольник со сторонамис центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляяв уравнение гиперболы, получаем

Следовательно, точки с координатами ипринадлежат гиперболе. Вычисляем фокусное расстояние

эксцентриситет ; фокальныи параметр. Составляем уравнения асимптот, то есть, и уравнения директрис:.

Парабола и её каноническое уравнение

Определение. Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, не проходящей через фокус и называемой директрисой.

Определение. Расстояние от фокуса параболы до её директрисы называется параметром параболы. Эксцентриситет параболы принимается равным единице.

Опустим из фокуса перпендикуляр на директрисуи точку пересечения этого перпендикуляра с директрисой параболы обозначим буквой. Введём на плоскости ДПСК, поместив начало координатв центре отрезка, принимая за осьпрямую, с положительным направлением отк(См. рис.176).

Расстояние от фокусадо директрисыобозначим буквой(это параметр параболы). В выбранной системе координат фокусимеет координаты. Уравнение директрисы.

Пусть - произвольная точка плоскости. Обозначим черезрасстояниеот точкидо фокусапараболы, а через- расстояниеот точкидо директрисы этой параболы.

Точка лежит на данной параболе тогда и

только тогда, когда . Так как,

а , то уравнение параболы имеет вид:

. Это уравнение эквивалентно следующему уравнению: .

Или: (1)

Определение. Уравнение (1) называется каноническим уравнением параболы.

1. Гипербола лежит за полосой со сторонами x = ± a .

Действительно, согласно уравнению гиперболы, имеет место неравенство

2. Гипербола является симметричной относительно начала координат и относительно координатных осей. Это вытекает из того, что в уравнение гиперболы переменные x и y входят в квадратах х 2 и у 2 , и уравнению гиперболы удовлетворяют точки с координатами (х , у ),

(− х , у ), (х , − у ), (− х , − у ).

3. Гипербола имеет две асимптоты

к которым приближаются точки гиперболы при удалении их от начала координат.

4. Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) - центром гиперболы. Одна из осей пересекается с гиперболой в двух точках А и С, которые называются ее вершинами. Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы. Величины а и b называются, соответственно, действительной и мнимой полуосями.

5. Гипербола с равными полуосями а = b называется равносторонней и ее каноническое уравнение имеет вид

x 2 − y 2 = a 2 .

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Эксцентриситет гиперболы (как и эллипса) обозначим буквой ε. Так как с > а : то ε > 1, т. е. эксцентриситет гиперболы больше единицы. Очевидно,

Из последнего равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b a , а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а, значит, и форму самой гиперболы.

В случае равносторонней гиперболы (a = b ) ε = √2.

ОПР 2. . Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии а ⁄ ε от него, называются директрисами гиперболы.

Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной ε, является эллипсом, если ε < 1, и гиперболой, если ε > 1.

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.