Сила тяжести и сила всемирного тяготения. Сила тяготения Сила тяготения прямо пропорциональна массам взаимодействующих тел

  • 5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
  • 6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
  • 7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
  • 8. Закон всемирного тяготения. Сила тяжести и вес тела.
  • 9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
  • 10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.
  • 11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
  • 12. Работа, совершаемая постоянной и переменной силой. Мощность.
  • 13. Кинетическая энергия и связь энергии и работы.
  • 14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
  • 15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
  • 16. Работа по перемещению тела в поле тяготения.
  • 17. Механическая энергия и её сохранение.
  • 18. Соударение тел. Абсолютно упругий и неупругий удары.
  • 19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
  • 20. Вычисление момента инерции. Примеры. Теорема Штейнера.
  • 21. Момент импульса и его сохранение. Гироскопические явления.
  • 22. Кинетическая энергия вращающегося твердого тела.
  • 24. Математический маятник.
  • 25. Физический маятник. Приведенная длина. Свойство оборотности.
  • 26. Энергия колебательного движения.
  • 27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
  • (2) (3)
  • 28. Биения
  • 29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
  • 30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
  • 31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
  • 32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
  • 33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
  • 34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
  • 35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
  • 37.Первое начало тд. Применение первого начала к различным изопроцессам.
  • 38. Теплоемкость идеального газа. Уравнение Майера.
  • 39. Уравнение адиабаты идеального газа.
  • 40. Политропические процессы.
  • 41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
  • 42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
  • 43. Энтропия.
  • 44. Энтропия и второе начало тд.
  • 45. Энтропия как количественная мера беспорядка в системе. Статистическая интерпретация энтропии. Микро и микросостояния системы.
  • 46. Распределение молекул газа по скоростям. Распределение Максвелла.
  • 47. Барометрическая формула. Распределение Больцмана.
  • 48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
  • 49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
  • 8. Закон всемирного тяготения. Сила тяжести и вес тела.

    Закон всемирного тяготения – две материальные точки притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

    , где G гравитационная постоянная = 6,67*Н

    На полюсе – mg== ,

    На экваторе – mg= –m

    Если тело над землей – mg== ,

    Сила тяжести – это сила с которой планета действует на тело. Сила тяжести равна произведению массы тела и ускорения свободного падения.

    Вес – это сила воздействия тела на опору, препятствующую падению, возникающую в поле сил тяжести.

    9. Силы сухого и вязкого трения. Движение по наклонной плоскости.

    Силы трения возникают, когда есть контакт м/у телами.

    Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Всегда направлены по касательной к соприкасающимся поверхностям.

    Сила трения покоя равна по величине внешней силе и направлена в противоположную сторону.

    Fтр покоя = -F

    Сила трения скольжения всегда направлена в сторону, противоположную направления движения, зависит от относительной скорости тел.

    Сила вязкого трения – при движении твердого тела в жидкости или газе.

    При вязком трении нет трения покоя.

    Зависит от скорости тела.

    При малых скоростях

    При больших скоростях

    Движение по наклонной плоскости:

    oy: 0=N-mgcosα, µ=tgα

    10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.

    При деформации тела возникает сила, которая стремится восстановить свои прежние размеры и форму тела – сила упругости.

    1.Растяжение x>0,Fy<0

    2.Сжатие x<0,Fy>0

    При малых деформациях (|x|<

    гдеk– жесткость тела (Н/м) зависит от формы и размера тела, а также от материала.

    ε=– относительная деформация.

    σ = =S– площадь поперечного сечения деформированного тела – напряжение.

    ε=E– модуль Юнга зависит от свойств материала.

    11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.

    Импульсом , или количеством движения материальной точки называется векторная величина, равная произведению массы материальной точки m на скорость ее движения v.

    – для материальной точки;

    – для системы материальных точек (через импульсы этих точек);

    – для системы материальных точек (через движение центра масс).

    Центром масс системы называется точка С, радиус-вектор r C которой равен

    Уравнение движения центра масс:

    Смысл уравнения таков: произведение массы системы на ускорение центра масс равно геометрической сумме внешних сил, действующих на тела системы. Как видим, закон движения центра масс напоминает второй закон Ньютона. Если внешние силы на систему не действуют или сумма внешних сил равна нулю, то ускорение центра масс равно нулю, а скорость его неизменна во времени по модулю и наплавлению, т.е. в этом случае центр масс движется равномерно и прямолинейно.

    В частности, это означает, что если система замкнута и центр масс ее неподвижен, то внутренние силы системы не в состоянии привести центр масс в движение. На этом принципе основано движение ракет: чтобы ракету привести в движение, необходимо выбросить выхлопные газы и пыль, образующиеся при сгорании топлива, в обратном направлении.

    Закон Сохранения Импульса

    Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокупность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механической системы называютсявнутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называютсявнешними. Механическая система тел, на которую не действуют

    внешние силы, называется замкнутой (илиизолированной). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

    Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равныт 1 , m 2 , . ..,т n иv 1 ,v 2 , .. .,v n . ПустьF " 1 ,F " 2 , ...,F " n - равнодействующие внутренних сил, действующих на каждое из этих тел, af 1 ,f 2 , ...,F n - равнодействующие внешних сил. Запишем второй закон Ньютона для каждого изn тел механической системы:

    d/dt(m 1 v 1)=F " 1 +F 1 ,

    d/dt(m 2 v 2)=F" 2 +F 2 ,

    d/dt(m n v n)= F " n +F n .

    Складывая почленно эти уравнения, получим

    d/dt (m 1 v 1 +m 2 v 2 +... +m n v n) =F " 1 +F " 2 +...+F " n +F 1 +F 2 +...+F n .

    Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

    d/dt(m 1 v 1 +m 2 v 2 + ... + m n v n)= F 1 + F 2 +...+ F n , или

    dp/dt=F 1 + F 2 +...+ F n , (9.1)

    где

    импульс системы. Таким образом, производная по времени от им пульса механической системы равна гео метрической сумме внешних сил, действующих на систему.

    В случае отсутствия внешних сил (рассматриваем замкнутую систему)

    Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

    Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со хранения импульса - фундаментальный закон природы.

    "

    Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила равна:

    ,

    Где и - массы взаимодействующих тел, - расстояние между ними, - коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки .

    Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если , , то , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение: . Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

    Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения. В соответствии со вторым законом Ньютона , следовательно, . Сила тяжести всегда направлена к центру Земли. В зависимости от высоты над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно .

    В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 5). Вес тела обозначается . Единица веса - ньютон (Н). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

    Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и нее тела равен силе тяжести (рис. 6):

    В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать (рис. 7, а).

    В проекции на ось : , отсюда .

    Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле .

    Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой . Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при вы-полнении фигур высшего пилотажа, и водители автомобилей при резком торможении.

    Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем ; m g - N = m a ; ; , т. е. вес при движении по вертикали с ускорением будет меньше силы тяжести (рис. 7, б).

    Если тело свободно падает, то в этом случае .

    Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

    В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

    Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

    И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

    Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

    Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

    Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

    Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

    где g – ускорение свободного падения (g = 9,8 м/с²).

    Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

    Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

    Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

    Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

    Р = - Fу = Fтяж.

    Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

    Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

    Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

    Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

    Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

    Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

    В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

    Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

    Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

    Закон всемирного тяготения

    Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

    \[ F = G \dfrac{m_1 m_2}{R^2} \]

    где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

    Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

    Численное значение:

    \(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

    Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

    Сила тяжести

    Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

    В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

    Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

    \(F = G \dfrac{M}{R^2}m = mg \) .

    Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

    Вес тела

    В технике и быту широко используется понятие веса тела.

    Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

    При этом предполагается, что тело неподвижно относительно опоры или подвеса.

    Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

    Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
  • Кто открыл закон всемирного тяготения

    Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

    Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

    Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

    Определение закона всемирного тяготения

    Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

    Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

    Формула закона всемирного тяготения

    Ниже представляем вашему вниманию формулу закона всемирного тяготения.

    G в этой формуле это гравитационная постоянная, равная 6,67408(31) 10 −11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

    Закон всемирного тяготения и невесомость тел

    Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.