Теория Большого взрыва: история эволюции нашей Вселенной. Основные понятия о пожарах и взрывах Форма обучения: очная

Взрыв - быстропротекающий физический или физико-химический процесс, проходящий со значительным выделением энергии в небольшом объёме за короткий промежуток времени и приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду вследствие высокоскоростного расширения продуктов взрыва .

Дефлаграционный взрыв - энерговыделение в объёме облака горючих газообразных смесей и аэрозолей при распространении экзотермической химической реакции с дозвуковой скоростью .

Детонационный взрыв - взрыв, при котором воспламенение последующих слоев взрывчатого вещества происходит в результате сжатия и нагрева ударной волной, характеризующейся тем, что ударная волна и зона химической реакции следуют неразрывно друг за другом с постоянной сверхзвуковой скоростью .

Химический взрыв неконденсированных веществ от горения отличается тем, что горение происходит, когда горючая смесь образуется в процессе самого горения. :36

Продукты взрыва обычно являются газами с высокими давлением и температурой, которые, расширяясь, способны совершать механическую работу и вызывать разрушения других объектов. В продуктах взрыва помимо газов могут содержаться и твёрдые высокодисперсные частицы. Разрушительное действие взрыва вызвано высоким давлением и образованием ударной волны . Действие взрыва может быть усилено кумулятивными эффектами .

Энциклопедичный YouTube

  • 1 / 5

    По происхождению выделившейся энергии различают следующие типы взрывов:

    • Химические взрывы взрывчатых веществ - за счёт энергии химических связей исходных веществ.
    • Взрывы ёмкостей под давлением (газовые баллоны , паровые котлы , трубопроводы) - за счет энергии сжатого газа или перегретой жидкости. К ним, в частности, относятся:
      • Взрыв расширяющихся паров вскипающей жидкости (BLEVE) .
      • Взрывы при сбросе давления в перегретых жидкостях.
      • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
    • Ядерные взрывы - за счет энергии, высвобождающейся в ядерных реакциях.
    • Электрические взрывы (например, при грозе).
    • Вулканические взрывы.
    • Взрывы при столкновении космических тел, например, при падении метеоритов на поверхность планеты.
    • Взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

    Химические взрывы

    Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (медленного горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при медленном горении. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы горения в детонацию и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

    Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв . Существуют очень немногие примеры химических взрывов, не имеющих своей причиной окисление/восстановление, например реакция мелкодисперсного оксида фосфора(V) с водой, но её можно рассматривать и как паровой взрыв .

    Индивидуальные взрывчатые вещества , как правило, содержат кислород в составе своих собственных молекул. Это метастабильные вещества, которые способны храниться более или менее долгое время при нормальных условиях. Однако при инициировании взрыва веществу передаётся достаточная энергия для самопроизвольного распространения волны горения или детонации, захватывающей всю массу вещества. Подобными свойствами обладают нитроглицерин , тринитротолуол и другие вещества.

    Взрыв - распространённое физическое явление, которое сыграло немалую роль в судьбе человечества. Он может разрушать и убивать, а также нести пользу, защищая человека от таких угроз, как наводнение и астероидная атака. Взрывы различаются по своей природе, но по характеру процесса они всегда разрушительны. Эта сила и является их главной отличительной особенностью.

    Слово "взрыв" знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв - это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.

    Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.

    В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.

    Классификация взрывов

    Взрывы могут иметь различную природу, мощность. Происходят в различных средах (включая вакуум). По природе возникновения взрывы можно разделить на:

    • физические (взрыв лопнувшего шарика и т. д.);
    • химические (например, взрыв тротила);
    • ядерные и термоядерные взрывы.

    Химические взрывы могут протекать в твёрдых, жидких или газообразных веществах, а также воздушных взвесях. Главными при таких взрывах являются окислительно-восстановительные реакции экзотермического типа, либо экзотермические реакции разложения. Примером химического взрыва является взрыв гранаты.

    Физические взрывы возникают при нарушении герметичности ёмкостей со сжиженным газом и другими веществами, находящимися под давлением. Также их причиной может стать тепловое расширение жидкостей или газов в составе твёрдого тела с последующим нарушением целостности кристаллической структуры, что приводит к резкому разрушению объекта и возникновению эффекта взрыва.

    Мощность взрыва

    Мощность взрывов может быть различной: от обычного громкого хлопка из-за лопнувшего воздушного шарика или взорванной петарды до гигантских космических взрывов сверхновых звёзд.

    Интенсивность взрыва зависит от количества выделенной энергии и скорости её выделения. При оценке энергии химического взрыва используют такой показатель, как количество выделенной теплоты. Объём энергии при физическом взрыве определяется количеством кинетической энергии адиабатического расширения паров и газов.

    Техногенные взрывы

    На промышленном предприятии взрывоопасные объекты не редкость, а потому там могут возникнуть такие виды взрывов, как воздушный, наземный и внутренний (внутри технического сооружения). При добыче каменного угля нередкими являются взрывы метана, что особенно характерно для глубоких угольных шахт, где по этой причине имеется дефицит вентиляции. Причём различные угольные пласты имеют разное содержание метана, поэтому и уровень взрывной опасности на шахтах различен. Взрывы метана являются большой проблемой для глубоких шахт Донбасса, что требует усиления контроля и мониторинга его содержания в воздухе рудников.

    Взрывоопасные объекты - это ёмкости со сжиженным газом или находящимся под давлением паром. Также военные склады, контейнеры с аммиачной селитрой и многие другие объекты.

    Последствия взрыва на производстве могут быть непредсказуемые, в том числе трагические, среди которых лидирующее место занимает возможный выброс химикатов.

    Применение взрывов

    Эффект взрыва издавна используется человечеством в различных целях, которые можно разделить на мирные и военные. В первом случае речь идёт о создании направленных взрывов для разрушения подлежащих сносу строений, ледяных заторов на реках, при добыче полезных ископаемых, в строительстве. Благодаря им существенно снижаются трудозатраты, необходимые для осуществления поставленных задач.

    Взрывчатое вещество - это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.

    Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:

    • механические воздействия (например, удар);
    • химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
    • температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
    • детонация от близлежащего взрыва.

    Степень реакции на внешние воздействия

    Степень реакции взрывчатого вещества на любое из воздействий исключительно индивидуальна. Так, некоторые виды пороха легко воспламеняются при нагреве, но остаются инертными под действием химических и механических влияний. Тротил взрывается от детонации других взрывчатых веществ, а к остальным факторам он мало чувствителен. Гремучая ртуть подрывается при всех видах воздействий, а некоторые взрывчатые вещества могут даже взрываться самопроизвольно, что делает такие составы очень опасными и малопригодными для использования.

    Как детонирует взрывчатое вещество

    Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

    При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

    Типы взрывчатых веществ

    Особенности чувствительности к внешним воздействиям и показатели взрывной мощности позволяют разделить взрывчатые вещества на 3 основные группы: метательные, инициирующие и бризантные. К метательным относят различные виды пороха. В эту группу входят маломощные взрывные смеси для петард и фейерверков. В военном деле их используют для изготовления осветительных и сигнальных ракет, в качестве источника энергии для патронов и снарядов.

    Особенностью инициирующих взрывчатых веществ является чувствительность к внешним факторам. При этом у них невысокая взрывная мощность и тепловыделение. Поэтому их используют в качестве детонатора для бризантных и метательных взрывчаток. Для исключения самоподрыва их тщательно упаковывают.

    Бризантные взрывчатые вещества обладают наибольшей взрывной мощностью. Они используются в качестве начинки для бомб, снарядов, мин, ракет и т. д. Наиболее опасными из них является гексоген, тетрил, тэн. Менее мощным взрывчатым веществом является тротил и пластид. Среди наименее мощных - аммиачная селитра. Бризантные вещества с высокой взрывной мощностью обладают и большей чувствительность к внешним воздействиям, что делает их ещё более опасными. Поэтому их используют в комбинации с менее мощными либо другими компонентами, которые приводят к снижению чувствительности.

    Параметры взрывчатых веществ

    В соответствии с объемами и скоростью энерго- и газовыделения все взрывчатые вещества оценивают по таким параметрам, как бризантность и фугасность. Бризатность характеризует скорость энерговыделения, которая напрямую влияет на разрушающие способности взрывчатого вещества.

    Фугасность определяет величину выделения газов и энергии, а значит и количество произведённой при взрыве работы.

    По обоим параметрам лидирует гексоген, который является наиболее опасным взрывчатым веществом.

    Итак, мы попытались дать ответ на вопрос о том, что такое взрыв. А также рассмотрели основные типы взрывов и способы классификации взрывчатых веществ. Надеемся, что прочитав эту статью, вы получили общее представление о том, что такое взрыв.

    Общие сведения о взрыве

    Взрыв - это быстропротекающий процесс физических и химических превращений веществ, сопровождающийся освобождением значительного количества энергии в ограниченном объеме, в результате которого образуется и распространяется ударная волна, оказывающая ударное механическое воздействие на окружающие предметы.

    ХАРАКТЕРНЫЕ ОСОБЕННОСТИ ВЗРЫВА:

    Большая скорость химического превращения взрывчатых веществ;
    большое количество газообразных продуктов взрыва;
    сильный звуковой эффект (грохот, громкий звук, шум, сильный хлопок);
    мощное дробящее действие.

    В зависимости от среды, в которой происходят взрывы, они бывают подземными, наземными, воздушными, подводными и надводными .

    Масштабы последствий взрывов зависят от их мощности и среды, в которой они происходят. Радиусы зон поражения при взрывах могут доходить до нескольких километров.

    Различают три зоны действия взрыва .

    3она I - зона действия детонационной волны. Для нее характерно интенсивное дробящее действие, в результате которого конструкции разрушаются на отдельные фрагменты, разлетающиеся с большими скоростями от центра взрыва.

    Зона II - зона действия продуктов взрыва. В ней происходит полное разрушение зданий и сооружений под действием расширяющихся продуктов взрыва. На внешней границе этой зоны образующаяся ударная волна отрывается от продуктов взрыва и движется самостоятельно от центра взрыва. Исчерпав свою энергию, продукты взрыва, расширившись до плотности, соответствующей атмосферному давлению, не производят больше разрушительного действия.

    Зона III - зона действия воздушной ударной волны - включает в себя три подзоны: III а - сильных разрушений, III б - средних разрушений, III в - слабых разрушений. На внешней границе зоны 111 ударная волна вырождается в звуковую, слышимую еще на значительных расстояниях.

    ДЕЙСТВИЕ ВЗРЫВА НА ЗДАНИЯ, СООРУЖЕНИЯ, ОБОРУДОВАНИЕ .

    Наибольшим разрушениям продуктами взрыва и ударной волной подвергаются здания и сооружения больших размеров с легкими несущими конструкциями, значительно возвышающиеся над поверхностью земли. Подземные и заглубленные в грунт сооружения с жесткими конструкциями обладают значительной сопротивляемостью разрушению.

    Разрушения подразделяют на полные, сильные, средние и слабые .

    Полные разрушения . В зданиях и сооружениях обрушены перекрытия и разрушены все основные несущие конструкции. Восстановление невозможно. Оборудование, средства механизации и другая техника восстановлению не подлежат. В коммунальных и энергетических сетях имеются разрывы кабелей, разрушения участков трубопроводов, опор воздушных линий электропередачи и т. п.

    Сильные разрушения . В зданиях и сооружениях имеются значительные деформации несущих конструкций, разрушена большая часть перекрытий и стен. Восстановление возможно, но нецелесообразно, так как практически сводится к новому строительству с использованием некоторых сохранившихся конструкций. Оборудование и механизмы большей частью разрушены и деформированы.

    В коммунальных и энергетических сетях имеются разрывы и деформации на отдельных участках подземных сетей, деформации воздушных линий электропередачи и связи, разрывы технологических трубопроводов.

    Средние разрушения . В зданиях и сооружениях разрушены главным образом не несущие, а второстепенные конструкции (легкие стены, перегородки, крыши, окна, двери). Возможны трещины в наружных стенах и вывалы в отдельных местах. Перекрытия и подвалы не разрушены, часть сооружений пригодна к эксплуатации. В коммунальных и энергетических сетях значительны разрушения и деформации элементов, которые можно устранить капитальным ремонтом.

    Слабые разрушения . В зданиях и сооружениях разрушена часть внутренних перегородок, окна и двери. Оборудование имеет значительные деформации. В коммунальных и энергетических сетях имеются незначительные разрушения и поломки конструктивных элементов.

    Общие сведения о пожаре

    ПОЖАР И ЕГО ВОЗНИКНОВЕНИЕ .

    Пожаром называют неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

    Сущность горения была открыта в 1756 г. великим русским ученым М. В. Ломоносовым. Своими опытами он доказал, что горение - это химическая реакция соединения горючего вещества с кислородом воздуха. Поэтому, чтобы протекал процесс горения, необходимы следующие условия :

    Наличие горючего вещества (кроме горючих веществ, применяемых в производственных процессах, и горючих материалов, используемых в интерьере жилых и общественных зданий, значительное количество горючих веществ и горючих материалов содержится в конструкциях зданий);
    наличие окислителя (обычно окислителем при горении веществ бывает кислород воздуха; кроме него окислителями могут быть химические соединения, содержащие кислород в составе молекул: селитры, перхлораты, азотная кислота, окислы азота и химические элементы: фтор, бром, хлор);
    наличие источника воспламенения (открытый огонь свечи, спички, зажигалки, костра или искры).

    Отсюда следует, что пожар можно прекратить, если из зоны горения исключить одно из первых двух условий.

    Возможность возникновения пожаров в зданиях и сооружениях и в особенности распространения огня в них зависит от того, из каких деталей, конструкций и материалов они выполнены, каковы их размеры и планировка. Как видно из схемы 2, по группам возгораемости вещества и материалы делятся:

    На негорючие вещества, неспособные гореть;
    на трудногорючие вещества, способные гореть под воздействием источника зажигания, но неспособные самостоятельно гореть после его удаления;
    на горючие вещества, способные гореть после удаления источника зажигания:
    а) трудновоспламеняющиеся, способные воспламеняться только под воздействием мощного источника зажигания;
    б) легковоспламеняющиеся, способные воспламеняться от кратковременного воздействия источников зажигания с низкой энергией (пламени, искры).

    Понятие о взрыве и взрывчатых веществах

    Взрывчатыми веществами (ВВ) называются вещества, способные под влиянием внешнего воздействия к чрезвычайно быстрому химическому превращению с выделением тепла и образованием сильно нагретых газов. Процесс такого химического превращения взрывчатого вещества называется взрывом.

    Для взрыва характерны три основных фактора, которые определяют действие, производимое взрывом:

    Очень большая скорость превращения взрывчатого вещества, измеряемая промежутком времени от сотых до миллионных долей секунды;

    Высокая температура, достигающая 3–4,5 тыс. градусов;

    Образование большого количества газообразных продуктов, которые, сильно нагреваясь и быстро расширяясь, превращают выделяющуюся при взрыве тепловую энергию в механическую работу, производя разрушения или разбрасывание окружающих заряд предметов.

    Совокупностью указанных факторов и объясняется огромная, по сравнению с другими источниками энергии, кроме атомной, мощность взрывчатых веществ. При отсутствии хотя бы одного из перечисленных факторов взрыва не будет.

    Для возбуждения взрыва необходимо воздействовать на взрывчатое вещество извне, сообщить ему некоторую порцию энергии, величина которой зависит от свойств взрывчатого вещества. Взрыв могут вызвать различные виды внешнего воздействия: механический удар, накол, трение, нагревание (пламенем, накаленным телом, искрой), электрическое накаливание или искровой разряд, химическая реакция и, наконец, взрыв другого взрывчатого вещества (капсюлем-детонатором, детонацией на расстоянии).

    Основные формы взрывчатого превращения.

    Взрывчатое превращение веществ характеризуется тремя показателями: экзотермичностью процесса (выделением тепла); скоростью распространения процесса (кратковременность) и образованием газообразных продуктов.

    Экзотермичность процесса взрыва является первым необходимым условием, без которого невозможно возникновение и проявление взрыва. За счет тепловой энергии реакции происходит разогрев газообразных продуктов до температуры в несколько тысяч градусов, их сильное сжатие в объеме взрывчатого вещества и последующее активное расширение.

    Образование большого количества газообразных и парообразных продуктов реакции обеспечивает создание в локальном объеме высокого давления и обусловленного им разрушительного эффекта. Вследствие нагревания до высокой температуры (3500 – 4000К) продукты взрыва оказываются в чрезвычайно сжатом состоянии (давление при взрыве достигает (20…40)*103 МПа) и способны разрушить очень прочные преграды. В процессе расширения продуктов взрыва осуществляется быстрый переход потенциальной химической энергии ВВ в механическую работу или в кинетическую энергию движущихся частиц



    Быстрым сгоранием взрывчатого вещества обычно называют процесс, скорость распространения которого по массе ВВ не превышает нескольких метров в секунду, а иногда - даже долей метра в секунду. Характер действия в этом случае - более или менее быстрое нарастание давления газов и производство ими работы разбрасывания или метания окружающих тел. Если процесс быстрого сгорания происходит на открытом воздухе, то он не сопровождается сколько-нибудь значительным эффектом

    Классификация ВВ.

    Все ВВ, применяемые при производстве подрывных работ и снаряжении различных боеприпасов делятся на три основные группы:

    · инициирующие;

    · бризантные;

    · метательные (пороха).

    ИНИЦИИРУЮЩИЕ - особо восприимчивые к внешним воздействиям (удару, трению, воздействию огня). К ним относятся:

    · гремучая ртуть (фульминат ртути);

    · азид свинца (азотистоводороднокислый свинец);

    · тенерес (тринитрорезорцинат свинца, ТНРС);

    БРИЗАНТНЫЕ (дробящие) - способные к устойчивой детонации. Они более мощны и менее чувствительны к внешним воздействиям и в свою очередь подразделяются на:

    ВВ ПОВЫШЕННОЙ МОЩНОСТИ , к которым относятся:

    · тэн (тетранитропентраэритрит, пентрит);

    · гексоген (триметилентринитроамин);

    · тетрил (тринитрофенилметилнитроамин).

    ВВ НОРМАЛЬНОЙ МОЩНОСТИ :

    · тротил (тринитротолуол, тол, ТНТ);

    · пикриновая кислота (тринитрофенол, мелинит);

    · ПВВ-4 (пластит-4);

    ВВ ПОНИЖЕННОЙ МОЩНОСТИ (амиачноселитренные ВВ):

    · аммониты;

    · динамоны;

    · аммоналы.

    МЕТАТЕЛЬНЫЕ (пороха) - ВВ, основной формой взрывчатого превращения которых является горение. К ним относятся: - дымный порох; - бездымные пороха.



    Пиротехнический состав - это смесь компонентов, обладающая способностью к самостоятельному горению или горению с участием окружающей среды, генерирующая в процессе горения газообразные и конденсированные продукты, тепловую, световую и механическую энергию и создающая различные оптические, электрические, барические и иные специальные эффекты

    Классификация ПС. Требования к ПС.

    КЛАССИФИКАЦИЯ

    Пиротехническими составами снаряжают следующие виды средств военного назначения:

    1) осветительные средства (авиабомбы, артиллерийские снаряды, авиационные факелы и др.), используемые для освещения местности в ночных условиях;

    2) фотоосветительные средства (фотобомбы, фотопатроны), используемые при ночной аэрофотосъемке: и для других целей;

    3) трассирующие средства, делающие видимой траекторию полета пуль и снарядов (и других подвижных объектов) и тем самым облегчающие пристрелку по быстро движущимся целям;

    4) средства инфракрасного излучения, используемые для слежения за полетом ракет и в качестве ложных целей;

    5) ночные сигнальные средства (патроны и др.), применяемые для подачи сигналов;

    6) дневные сигнальные средства (патроны и др.), используемые для той же цели, но в дневных условиях;

    7) зажигательные средства (бомбы, снаряды, пули и многие Др.), служащие для уничтожения военных объектов противника;

    8) маскирующие средства (дымовые шашки, снаряды и др.), употребляемые для получения дымовых завес;

    9) ракеты различного назначения и дальности полета, использующие твердое пиротехническое топливо;

    10) учебно-имитационные средства, употребляемые как на маневрах и ученьях, так и в боевой обстановке. Они имитируют действие атомных бомб, фугасных снарядов и бомб, а также различные явления на поле боя: орудийные выстрелы, пожары и др., и могут этим дезориентировать службу наблюдения противника;

    11) целеуказательные средства (снаряды, бомбы и др.), указывающие местонахождение объектов противника;

    12) пиротехнические газогенераторы, используемые для различных целей. Пиротехнические составы используются также и в различных областях народного хозяйства

    К пиротехническим составам военного назначения можно отнести следующие:

    1) осветительные;

    2) фотоосветительные (фотосмеси);

    3) трассирующие;

    4) инфракрасного излучения;

    5) зажигательные;

    6) ночных сигнальных огней;

    7) цветных сигнальных дымов;

    8) маскирующих дымов;

    9) твердое пиротехническое топливо;

    10) безпазовые (для замедлителей);

    11) газогенерирующие;

    12) воспламенительные, содержащиеся в небольшом количестве во всех пиротехнических средствах;

    13) прочие: имитационные, свистящие и др. Многие составы применяются в самых различных видах средств; так, например, осветительные составы часто используют в трассирующих средствах; составы маскирующих дымов могут быть использованы и в учебно-имитационных средствах и т. д.

    Пиротехнические составы можно также классифицировать по характеру процессов, протекающих три их горении.

    Пламенные составы

    1. Белопламенные.

    2. Цветнолламенные.

    3. Составы инфракрасного излучения.

    Тепловые составы

    1. Термитно-зажигательные.

    2. Безгазовые (малогазовые).

    Дымовые составы

    1. Белого и черного дыма.

    2. Цветного дыма.

    Вещества и смеси, сгорающие за счет кислорода воздуха

    1. Металлы и сплавы металлов.

    2. Фосфор, его растворы и сплавы.

    3. Смеси нефтепродуктов.

    4. Различные вещества и смеси, загорающиеся при соприкосновении с водой или воздухом.

    ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПИРОТЕХНИЧЕСКИМ СРЕДСТВАМ И СОСТАВАМ

    Основное требование - это получение при действии пиротехнического средства максимального специального эффекта. Для различных средств специальный эффект обуславливается различными факторами. Этот вопрос подробно разбирается при описании свойств отдельных категорий составов и средств. Здесь же приводится только несколько примеров.

    Для трассирующих средств, специальный эффект определяется хорошей видимостью полета пули или снаряда. Видимость, в свою очередь, определяется силой света пламени и зависит также от цвета пламени.

    Для зажигательных средств хороший специальный эффект обуславливается (при наличии подходящей конструкции боеприпасов) созданием достаточно большого очага пожара, высокой температурой пламени, достаточным временем горения состава, а также количеством и свойствами шлаков, получающихся при горении.

    Для маскирующих дымовых средств, специальный эффект определяется созданием возможно большей, густой и устойчивой дымовой завесы.

    Пиротехнические средства не должны представлять опасности при обращении с ними и хранении. Получаемый при их действии эффект не должен ухудшаться после длительного хранения.

    Материалы, используемые для изготовления пиротехнических средств, должны быть по возможности недефицитны. Технологический процесс изготовления должен быть простым, безопасным и допускающим механизацию и автоматизацию производства.

    Пиротехнические составы должны обладать следующими качествами: 6

    1) давать максимальный специальный эффект при минимальном расходовании состава;

    2) иметь по возможности большую плотность (и в порошкообразном, и в прессованном виде);

    3) сгорать равномерно с определенной скоростью;

    4) обладать химической и физической стойкостью при длительном хранении;

    5) иметь возможно меньшую чувствительность к механическим импульсам;

    6) не быть чрезмерно чувствительными к тепловым воздействиям (не воспламеняться при небольшом подъеме температуры, при попадании искры и т. п.);

    7) иметь минимальные взрывчатые свойства; редкие случаи, когда наличие взрывчатых свойств необходимо, будут оговорены ниже;

    8) иметь несложный технологический процесс изготовления;

    ИВВ. Общая характеристика

    Инициирующие ВВ - это такие взрывчатые вещества, которые характеризуются чрезвычайно высокой чувствительностью к простым видам начального импульса и способностью детонировать в весьма малых количествах.

    Когда скорость детонации ИВВ достигает максимального значения, скорость детонации БВВ значительно меньше скорости детонации ИВВ. Позднее, когда скорость детонации БВВ достигает максимальной величины, соотношение энергии изменяется в пользу БВВ, так как скорость детонации БВВ выше, чем у ИВВ. Ускорение взрывчатого превращения зависит от природы ИВВ, величины начального импульса, плотности заряда и плотности его оболочки.

    Поэтому ИВВ применяются для инициирования (возбуждения) процессов взрыва разрывных зарядов или горения метательных и ракетных зарядов. В соответствии с этим назначением ИВВ часто называют первичными.

    Все ИВВ делятся на индивидуальные и смесевые инициирующие смеси. Индивидуальные ИВВ представлены различными классами неорганических соединений. Из всего многообразия классов лишь немногие получили широкое применение в качестве ИВВ. К ним относятся фульминаты (соли гремучей кислоты), азиды (соли азотистоводородной кислоты), стифнаты или тринитрорезорцинаты (соли стифниновой кислоты или тринитрорезорцина), производственные тетразена.

    Получение

    Гремучую ртуть получают взаимодействием нитрата ртути с этанолом в разбавленной азотной кислоте. Реакция протекает по схеме:

    Свойства

    Белый или серый кристаллический порошок, нерастворим в воде. Имеет сладкий металлический вкус, ядовит. Насыпная плотность 1,22-1,25 г/см³. Теплота разложения 1,8 МДж/кг. Температура вспышки - 180 °C. Нижний предел чувствительности при падении груза 700 г - 5,5 см, верхний - 8,5 см. Гравиметрическая плотность 4,39 г/см³. Легко взрывается при ударе, действии пламени, раскалённого тела и т. п. При осторожном нагревании гремучая ртуть медленно разлагается. При 130-150 °C самовоспламеняется со взрывом. Влажная гремучая ртуть гораздо менее взрывоопасна. Влажность гремучей ртути, запрессованной в капсюль-детонатор, должна быть не более 0,03 %. Гремучая ртуть хорошо растворима в водных растворах аммиака или цианистого калия. Концентрированная серная кислота вызывает взрыв одной каплей. Температура взрыва гремучей ртути равна 4810 °C, объём газов 315 л/кг, скорость детонации 5400 м/сек.

    Гремучую ртуть получают при действии азотнокислой ртути и азотной кислоты на этиловый спирт. Применяют в капсюлях-детонаторах и капсюлях-воспламенителях. В последнее время гремучая ртуть вытесняется более эффективными инициирующими взрывчатыми веществами - азидом свинца и др.

    Свойства азид свинца

    · Теплота взрыва: около 1,536 МДж/кг (7,572 МДж/дм³).

    · Объем газов: 308 л/кг (1518 л/дм³)

    · Скорость детонации: около 4800 м/сек.

    Получение

    Синтез азида свинца осуществляется в ходе обменной реакции между растворами солей свинца и растворимыми азидами щелочных металлов. Азид свинца в результате выпадает в виде белого кристаллического осадка:

    Получение

    Получают нейтрализацией горячего водного раствора стифниновой кислоты гидрокарбонатом натрия и последующим взаимодействием образовавшегося стифната натрия с соответствующими растворимыми солями свинца (напр. ацетатом, нитратом или хлоридом) при температуре около 70 °C.

    · С 6 H(OH) 2 (NO 2) 3 + NaHCO 3 → C 6 H(NO 2) 3 (ONa) 2 + CO 2 + H 2 O

    · C 6 H(NO 2) 3 (ONa) 2 + PbCl 2 → C 6 H(NO 2) 3 (O) 2 Pb + NaCl

    · Тетразе́н - химическое соединение C 2 H 6 N 10 ·H 2 O. Моногидрат 5-(4-амидино-1-тетразено)тетразола .

    · Желтоватые клиновидные кристаллы. В насыпном виде представляет собой рыхлую кристаллическую массу с насыпной плотностью 0,45 г/см³. Почти не растворим в воде (0,02 г на 100 г воды при 22 °C) и в органических растворителях. Обладает сильными взрывчатыми свойствами.

    · Инициирующее взрывчатое вещество, используемое в капсюлях накольного действия как сенсибилизатор (увеличитель чувствительности) к азиду свинца или тринитрорезорцинату свинца.

    Свойства

    · Плотность кристаллов 1,685 г/см³

    · Теплота взрыва 2305 кДж/кг

    · Температура вспышки 140 °C

    · Объем газообразных продуктов взрыва 400-450 л/кг

    Получение

    Получают тетразен взаимодействием водных растворов нитрата или карбоната аминогуанидина NH 2 NHC(=NH)NH 2 с нитритом натрия NaNO 2 .

    БВВ. Классификация

    Бризантные ВВ менее чувствительны к внешним воздействиям, но обладают большей мощностью, чем инициирующие ВВ. Они служат для получения разрушительного действия взрыва. Бризантные ВВ применяются в чистом виде, а также в виде смесей друг с другом для производства подрывных работ, снаряжения авиационных, артиллерийских и инженерных боеприпасов.

    Бризантные ВВ подразделяются на:

    · ВВ повышенной мощности (гексоген, ТЭН, сплавы тротила с гексогеном, октоген, тетрил);

    · ВВ нормальной мощности (тротил, сплавы тротила с ксилитом, динамиты, пироксилин, пластические и эластичные ВВ);

    · ВВ пониженной мощности (аммиачная селитра, смеси аммиачной селитры с горючими или взрывчатыми веществами).

    Для сравнительной оценки взрывчатых свойств различных ВВ может быть использован тротиловый эквивалент, численно равный отношению теплоты взрывчатого превращения сравниваемого ВВ с аналогичной характеристикой тротила. Наиболее мощным ВВявляется октоген, тротиловый эквивалент которого равен 1,8.

    Физические свойства

    · Плотность: 1773 кг/м³

    · Температура плавления 140 °C, с разложением

    · Температура вспышки 215 °C,

    · Растворим в ацетоне, нерастворим в воде.

    Взрывчатые свойства

    · Более чувствителен к удару, чем гексоген,

    · Скорость детонации 8350 м/сек.

    · Теплота разложения 5756 кДж/кг

    · Бризантность

    · по Гессу 24 мм

    · по Касту 3,5 мм

    · Фугасность 500 мл

    · (Удельный) объём газообразных продуктов взрыва 790 л/кг

    · Критический диаметр 1,5 мм

    · тэн относительно стоек в химическом отношении

    · Стабильность при хранении выше, чем у гексогена

    · При температуре 215 °C взрывается.

    · Тротиловый эквивалент (RE) - 1.66

    Все величины сильно зависят от условий эксперимента: плотности заряда, материала оболочки, дисперсности взрывчатого вещества, наличия флегматизаторов и т. п.

    Получение

    Получают путём взаимодействия четырёхатомного спирта пентаэритрита с концентрированными азотной и серной кислотами.

    ТЕТРИЛ.

    ТРОТИЛ

    Физические свойства

    · Плотность: от 1500 кг/м³ до 1663 кг/м³

    · Температура плавления 80,85 °C

    · Температура кипения 295 °C

    · Температура вспышки 290 °C

    · Теплота взрыва - от 4103 кДж/кг до 4605 кДж/кг (в среднем 4184 кДж/кг)

    · Скорость детонации при плотности 1,64 - 6950 м/с

    · Бризантность по Гессу - 16 мм

    · Бризантность по Касту - 3,9 мм

    · Фугасность - 285 мл

    · Объем газообразных продуктов взрыва - 730 л/кг

    · Имеет невысокую чувствительность к удару (4-8 % взрывов при падении груза 10 кг с высоты 25 см) .

    · Срок хранения около 25 лет, после чего тротил становится более чувствительным к детонации.

    Получение[править | править вики-текст]

    Первый этап: нитрование толуола смесью азотной и серной кислот до моно- и динитротолуолов. Серная кислота используется как водоотнимающий агент.

    Второй этап: смесь моно- и динитротолуола нитруют в смеси азотной кислоты и олеума. Олеум используется как водоотнимающий агент.

    Излишек кислоты от второго этапа можно использовать для первого

    Физические свойства

    Гексоген - белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес - 1,816 г/см³, молярная масса - 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше - в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

    Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.

    Получение

    Метод Герца (1920) заключается в непосредственном нитровании гексаметилентетрамина (уротропина, (CH 2) 6 N 4) концентрированной азотной кислотой (HNO 3):

    {\displaystyle \mathrm {(CH_{2})_{6}N_{4}+3HNO_{3}\longrightarrow \ (CH_{2})_{3}N_{3}(NO_{2})_{3}+3HCOH+NH_{3}} }

    Производство гексогена по этому методу велось в Германии, Англии и других странах на установках непрерывного действия. Метод имеет ряд недостатков, главные из которых:

    · малый выход гексогена по отношению к сырью (35-40 %);

    · большой расход азотной кислоты.

    Октоген (1,3,5,7-тетранитро-1,3,5,7-тетраазациклооктан, циклотетраметилентетранитрамин, HMX) - (CH 2) 4 N 4 (NO 2) 4 , термостойкое бризантное взрывчатое вещество. Впервые был получен как побочный продукт процесса получения гексогена конденсацией нитрата аммония с параформом в присутствии уксусного ангидрида. Представляет собой белый порошок кристаллического характера. Ядовит.

    Физические свойства

    · Плотность: 1960 кг/м³

    · Температура плавления 278,5-280 °С (с разложением)

    · Температура вспышки 290°С

    Взрывчатые свойства

    · Обладает высокой чувствительностью к удару.

    · Скорость детонации 9100 м/с при плотности 1,84 г/см³.

    · Объём газообразных продуктов взрыва 782 л/кг.

    · Теплота взрыва 5,7 МДж/кг.

    · Фугасность 480 мл

    · Тротиловый эквивалент 1,7

    Получение

    Получают действием концентрированной азотной кислоты на уротропин в растворе уксусной кислоты, уксусного ангидрида и нитрата аммония в растворе азотной кислоты.

    Пороха. Основные виды.

    По́рох - многокомпонентная твёрдая взрывчатая смесь, способная к закономерному горению параллельными слоями без доступа кислорода извне с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов, движения ракет и в других целях . Его относят к классу метательных взрывчатых веществ. И ещё порох находится в пуле.

    Виды порохов

    Различают два вида пороха: смесевые (в том числе самый распространенный - дымный , или черный порох ) и нитроцеллюлозные (т. н. бездымные). Порох, применяемый в ракетных двигателях, называют твёрдым ракетным топливом. Основу нитроцеллюлозных порохов составляют нитроцеллюлоза и пластификатор. Помимо основных компонентов, эти пороха содержат различные добавки.

    Порох является взрывчатым веществом метательного действия. При соответствующем условии инициирования пороха способны к детонации аналогично бризантным взрывчатым веществам, благодаря чему дымный порох долгое время применяли в качестве бризантного взрывчатого вещества. При длительном хранении больше установленного для данного пороха срока или при хранении в ненадлежащих условиях происходит химическое разложение компонентов пороха и изменение его эксплуатационных характеристик (режима горения, механических характеристик ракетных шашек и др.). Эксплуатация и даже хранение таких порохов крайне опасны и могут привести к взрыву.

    Современные дымные , или чёрные пороха производятся по строгим нормативам и точной технологии. Все марки чёрного пороха делятся на зернистые и пороховую пудру (т. н. пороховая мякоть , ПМ). Основными компонентами дымного пороха являются калия нитрат, сера и древесный уголь; нитрат калия является окислителем (способствует быстрому горению), древесный уголь горючим (окисляемым окислителем), а сера - добавочным компонентом (так же, как и уголь, являясь топливом в реакции, она из-за невысокой температуры воспламенения улучшает поджигаемость). Во многих странах пропорции, установленные нормативами, несколько отличаются (но не сильно).

    Зернистые пороха изготовляются в виде зёрен неправильной формы в пять стадий (не считая сушки и дозирования): помол компонентов в пудру, их смешение, прессование в диски, дробление на гранулы и полировка.

    Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.

    Сорта дымных порохов (% состав KNO 3 , S, C.):

    · шнуровой (для огнепроводных шнуров)(77 %, 12 %, 11 %);

    · ружейный (для воспламенителей к зарядам из нитроцеллюлозных порохов и смесевых твёрдых топлив, а также для вышибных зарядов в зажигательных и осветительных снарядах);

    · крупнозернистый (для воспламенителей);

    · медленногорящий (для усилителей и замедлителей в трубках и взрывателях);

    · минный (для взрывных работ) (75 %, 10 %, 15 %);

    · охотничий (76 %, 9 %, 15 %);

    · спортивный.

    Дымный порох легко воспламеняется под действием пламени и искры (температура вспышки 300 °C), поэтому в обращении опасен. Хранится в герметической упаковке отдельно от других видов пороха. Гигроскопичен, при содержании влаги более 2 % плохо воспламеняется. Процесс производства дымных порохов предусматривает смешение тонкоизмельчённых компонентов и обработку полученной пороховой мякоти до получения зёрен заданных размеров. Коррозия стволов при использовании дымного пороха намного сильнее, чем от нитроцеллюлозных порохов, поскольку побочным продуктом сгорания является серная и сернистая кислоты. В настоящее время дымный порох используется в фейерверках. Примерно до конца XIX века применялся в огнестрельном оружии и взрывных боеприпасах.

    Нитроцеллюлозные пороха

    Порох был первым известным «топливом» для огнестрельного оружия и ракет. В отличие от долгое время использовавшегося дымного (чёрного) пороха на основе угля, сегодня получили широкое распространение нитроцеллюлозные пороха, так называемый бездымный порох; главным преимуществом этого вида пороха является бо́льший КПД и отсутствие дыма, мешающего обзору после выстрела.

    По составу и типу пластификатора (растворителя) нитроцеллюлозные пороха делятся на: пироксилиновые, баллиститные и кордитные. Они применяются для изготовления современных взрывчатых веществ, порохов, пиротехнических изделий и для подрыва (инициирования) других взрывчатых веществ, то есть в качестве детонаторов. Таким образом, в современных образцах вооружения в качестве топлива в основном используют бездымный порох (порошок нитроцеллюлозы, NC).

    ДРП, свойства и получение.

    Выстрел унитарного заряда

    Свойства порохов.

    Литье: виды,применение

    Литьё - заполнение чего-либо (формы, ёмкости, полости) материалом, находящимся в жидком агрегатном состоянии.

    Известно множество разновидностей литья:

    · в песчаные формы (ручная или машинная формовка);

    · в многократные (цементные, графитовые, асбестовые формы);

    · в оболочковые формы;

    · по выплавляемым моделям;

    · по замораживаемым ртутным моделям;

    · центробежное литье;

    · в кокиль ;

    · литьё под давлением;

    · по газифицируемым (выжигаемым) моделям;

    · вакуумное литьё;

    · электрошлаковое литьё;

    · литьё с утеплением.

    Так как разновидности литья различаются одновременно по многим разнородным признакам, то возможны и комбинированные варианты, например, электрошлаковое литьё в кокиль.

    Литьё в песчаные формы

    Литьё в песчаные формы - дешёвый, самый грубый, но самый массовый (до 75-80 % по массе получаемых в мире отливок) вид литья. Вначале изготовляется литейная модель (ранее - деревянная, в настоящее время часто используются пластиковые модели, полученные методами быстрого прототипирования ), копирующая будущую деталь. Модель засыпается песком илиформовочной смесью (обычно песок и связующее), заполняющей пространство между ею и двумя открытыми ящиками (опоками). Отверстия в детали образуются с помощью размещённых в форме литейных песчаных стержней, копирующих форму будущего отверстия. Насыпанная в опоки смесь уплотняется встряхиванием, прессованием или же затвердевает в термическом шкафу (сушильной печи). Образовавшиеся полости заливаются расплавом металла через специальные отверстия - литники. После остывания форму разбивают и извлекают отливку. После чего отделяютлитниковую систему (обычно это обрубка), удаляютоблой и проводяттермообработку .

    Новым направлением технологии литья в песчаные формы является применение вакуумируемых форм из сухого песка без связующего. Для получения отливки данным методом могут применяться различные формовочные материалы, например песчано-глинистая смесь или песок в смеси со смолой и т. д. Для формирования формы используют опоку (металлический короб без дна и крышки). Опока имеет две полуформы, то есть состоит из двух коробов. Плоскость соприкосновения двух полуформ - поверхность разъёма. В полуформу засыпают формовочную смесь и утрамбовывают её. На поверхности разъёма делают отпечаток промодели (промодель соответствует форме отливки). Также выполняют вторую полуформу. Соединяют две полуформы по поверхности разъёма и производят заливку металла.

    Литьё в кокиль

    Литьё металлов в кокиль - более качественный способ. Изготавливается кокиль - разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при литье в кокиль заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действиемсилы тяжести .

    Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200-300°С, покрытие рабочей полости новым слоем облицовки, простановка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление полученной отливки. Процесс кристаллизации сплава при литье в кокиль ускоряется, что способствует получению отливок с плотным и мелкозернистым строением, а следовательно, с хорошей герметичностью и высокими физико-механическими свойствами. Однако отливки из чугуна из-за образующихся на поверхности карбидов требуют последующегоотжига . При многократном использовании кокиль коробится и размеры отливок в направлениях, перпендикулярных плоскости разъёма, увеличиваются.

    В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45 % всех отливок из этих сплавов получают в кокилях. При литье в кокиль расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.

    Литьё под давлением

    ЛПД занимает одно из ведущих мест в литейном производстве. Производство отливок из алюминиевых сплавов в различных странах составляет 30-50 % общего выпуска (по массе) продукции ЛПД. Следующую по количеству и разнообразию номенклатуры группу отливок представляют отливки из цинковых сплавов. Магниевые сплавы для литья под давлением применяют реже, что объясняется их склонностью к образованию горячих трещин и более сложными технологическими условиями изготовления отливок. Получение отливок из медных сплавов ограничено низкой стойкостью пресс-форм.

    Номенклатура выпускаемых отечественной промышленностью отливок очень разнообразна. Этим способом изготавливают литые заготовки самой различной конфигурации массой от нескольких граммов до нескольких десятков килограммов. Выделяются следующие положительные стороны процесса ЛПД:

    · Высокая производительность и автоматизация производства, наряду с низкой трудоёмкостью на изготовление одной отливки, делает процесс ЛПД наиболее оптимальным в условиях массового и крупносерийного производств.

    · Минимальные припуски на мехобработку или не требующие оной, минимальная шероховатость необрабатываемых поверхностей и точность размеров, позволяющая добиваться допусков до ±0,075 мм на сторону.

    · Чёткость получаемого рельефа, позволяющая получать отливки с минимальной толщиной стенки до 0,6 мм, а также литые резьбовые профили.

    · Чистота поверхности на необрабатываемых поверхностях, позволяет придать отливке товарный эстетический вид.

    Также выделяют следующие негативное влияние особенностей ЛПД, приводящие к потере герметичности отливок и невозможности их дальнейшей термообработки:

    · Воздушная пористость, причиной образования которой являются воздух и газы от выгорающей смазки, захваченные потоком металла при заполнении формы. Что вызвано неоптимальными режимами заполнения, а также низкой газопроницаемостью формы.

    · Усадочные пороки, проявляющиеся из-за высокой теплопроводности форм наряду с затрудненными условиями питания в процессе затвердевания.

    · Неметаллические и газовые включения, появляющиеся из-за нетщательной очистки сплава в раздаточной печи, а также выделяющиеся из твёрдого раствора.

    Задавшись целью получения отливки заданной конфигурации, необходимо чётко определить её назначение: будут ли к ней предъявляться высокие требования по прочности, герметичности или же её использование ограничится декоративной областью. От правильного сочетания технологических режимов ЛПД, зависит качество изделий, а также затраты на их производство. Соблюдение условий технологичности литых деталей, подразумевает такое их конструктивное оформление, которое, не снижая основных требований к конструкции, способствует получению заданных физико-механических свойств, размерной точности и шероховатости поверхности при минимальной трудоёмкости изготовления и ограниченном использовании дефицитных материалов. Всегда необходимо учитывать, что качество отливок, получаемых ЛПД, зависит от большого числа переменных технологических факторов, связь между которыми установить чрезвычайно сложно из-за быстроты заполнения формы.

    Основные параметры, влияющие на процесс заполнения и формирования отливки, следующие:

    · давление на металл во время заполнения и подпрессовки;

    · скорость прессования;

    · конструкция литниково-вентиляционной системы;

    · температура заливаемого сплава и формы;

    · режимы смазки и вакуумирования.

    Сочетанием и варьированием этих основных параметров, добиваются снижения негативных влияний особенностей процесса ЛПД. Исторически выделяются следующие традиционные конструкторско-технологические решения по снижению брака:

    · регулирование температуры заливаемого сплава и формы;

    · повышение давление на металл во время заполнения и подпрессовки;

    · рафинирование и очистка сплава;

    · вакуумирование;

    · конструирование литниково-вентиляционной системы;

    Также, существует ряд нетрадиционных решений, направленных на устранение негативного влияние особенностей ЛПД:

    · заполнение формы и камеры активными газами;

    · использование двойного хода запирающего механизма;

    · использование двойного поршня особой конструкции;

    · установка заменяемой диафрагмы;

    · проточка для отвода воздуха в камере прессования;

    Центробежное литьё

    Центробежный метод литья (центробежное литьё) используется при получении отливок, имеющих форму тел вращения. Подобные отливки отливаются из чугуна, стали, бронзы и алюминия. При этом расплав заливают в металлическую форму, вращающуюся со скоростью 3000 об/мин.

    Под действием центробежной силы расплав распределяется по внутренней поверхности формы и, кристаллизуясь, образует отливку. Центробежным способом можно получить двухслойные заготовки, что достигается поочерёдной заливкой в форму различных сплавов. Кристаллизация расплава в металлической форме под действием центробежной силы обеспечивает получение плотных отливок.

    При этом, как правило, в отливках не бывает газовых раковин и шлаковых включений. Особыми преимуществами центробежного литья является получение внутренних полостей без примене

    Взрыв – это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения.

    Взрывчатыми веществами (ВВ) – особые группы веществ, способные к взрывчатым превращениям в результате внешних воздействий.
    Различают взрывы :

    1.Физический – высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (сжиженного пара). Сила взрыва зависит от внутреннего давления. Возникающие разрушения могут вызываться ударной волной от расширяющегося газа или осколками разорвавшегося резервуара (Пример: разрушение резервуаров со сжатым газом, паровых котлов, а также мощные электрические разряды)

    2.Химический – взрыв, вызванный быстрой экзотермической химической реакцией, протекающей с образованием сильно сжатых газообразных или парообразных продуктов. Примером может служить взрыв дымного пороха, при котором происходит быстрая химическая реакция между селитрой, углем и серой, сопровождающаяся выделением, значительного количества теплоты. Образовавшиеся газообразные продукты, нагретые за счет теплоты реакции до высокой температуры, обладают высоким давлением и, расширяясь, производят механическую работу.

    3.Атомные взрывы . Быстропротекающие ядерные и ли термоядерные реакции (реакции деления или соединения атомных ядер), при которых освобождается очень большое количество теплоты. Продукты реакции, оболочка атомной или водородной бомбы и некоторое количество окружающей бомбу среды мгновенно превращается в нагретые до очень высокой температуры газы, обладающие соответственно высоким давлением. Явление сопровождается колоссальной механической работой.

    Химические взрывы подразделяются на конденсированные и объемные взрывы.

    А) Под конденсированными взрывчатыми веществами понимаются химические соединения и смеси, находящиеся в твердом или жидком состоянии, которые под влиянием определенных внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу. Такое химическое превращение ВВ принято называть взрывчатым превращением.

    Возбуждением взрывчатого превращения ВВ называется инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:
    - механическим (удар, накол, трение);
    - тепловым (искра, пламя, нагревание);
    - электрическим (нагревание, искровой разряд);
    - химическим (реакции с интенсивным выделением тепла);
    - взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

    Конденсированные ВВ подразделяются на группы :

    Характеристика. Примеры вещества.

    Чрезвычайно опасные вещества

    Нестабильны. Взрываются даже в самых малых количествах. Трихлорид азота; некоторые органические перекисные соединения; ацетиленид меди, образующийся при контакте ацетилена с медью
    или медесодержащим сплавом

    Первичные ВВ

    Менее опасные вещества. Инициирующие соединения. Обладают очень высокой чувствительность к удару и тепловому воздействию. Используются в основном в капсулях-детонаторах для возбуждения детонации в зарядах ВВ. Азид свинца, гремучая ртуть.

    Вторичные ВВ (бризантные ВВ)

    Возбуждение детонации в них происходит при воздействии сильной ударной волны. Последняя может создаваться в процессе их горения или с помощью детонатора. Как правило, ВВ этой группы сравнительно безопасны в обращении и могут храниться в течение длительных промежутков времени. Динамиты, тротил, гексоген, октоген, централит.

    Метательные ВВ, пороха

    Чувствительность к удару очень мала, относительно медленно горят.
    Баллиститные пороха – смесь нитроцеллюлозы, нитроглицерина и других технологических добавок.
    Загораются от пламени, искры или нагрева. На открытом воздухе быстро горят. В замкнутом сосуде взрываются. На месте взрыва черного пороха, содержащего азотнокислый калий, серу и древесный уголь в отношениях 75:15:10, остается остаток, содержащий углерод.

    Классификацию взрывов можно произвести и по типам химических реакций:

    1. Реакция разложения – процесс разложения, который дают газообразные продукты
    2. Окислительно-восстановительная реакция – реакция, в которой воздух или кислород реагирует с восстановителем
    3. Реакция смесей – пример такой смеси – порох.

    Б) Объемные взрывы бывают двух типов:

    • Взрывы облака пыли (пылевые взрывы) рассматриваются как взрывы пыли в штольнях шахт и в оборудовании или внутри здания. Такие взрывоопасные смеси возникают при дроблении, просеве, насыпке, перемещении пылящих материалов. Взрывоопасные пылевые смеси имеют нижний концентрационный предел взрываемости (НКПВ) , определяемый содержанием (в граммах на кубический метр) пыли в воздухе. Так для порошка серы НКПВ составляет 2,3 г/м3. Концентрационные пределы пыли не являются постоянными и зависят от влажности, степени измельчения, содержания горючих веществ.

    В основе механизма пылевых взрывов на шахтах лежат относительно слабые взрывы газовоздушной смеси воздуха и метана. Такие смеси считаются уже взрывоопасными при 5%-ной концентрации метана в смеси. Взрывы газовоздушной смеси вызывают турбулентность воздушных потоков, достаточных для того, чтобы образовать пылевое облако. Воспламенение пыли порождает ударную волну, поднимающую еще большее количество пыли, и тогда может произойти мощный разрушительный взрыв.

    Меры, применяемые для предупреждения пылевых взрывов:

      1. вентиляция помещений, объектов
      2. увлажнение поверхностей
      3. разбавление инертными газам (СО 2, N2) или порошками силикатными

    Пылевые взрывы внутри зданий, оборудования чаще всего происходят на элеваторах, где из-за трения зернышек при их перемещении образуется большое количество мелкой пыли.

    • Взрывы паровых облаков – процессы быстрого превращения, сопровождающиеся возникновением взрывной волны, происходящие на открытом воздушном пространстве в результате воспламенения облака, содержащего горючий пар.

    Такие явления возникают при утечке сжиженного газа, как правило, в ограниченных пространствах (помещениях), где быстро растет та предельная концентрация горючих элементов, при которой происходит воспламенение облака.
    Меры, применяемые для предупреждения взрывов паровых облаков:

      1. сведение к минимуму использования горючего газа или пара
      2. отсутствие источников зажигания
      3. расположение установок на открытом, хорошо проветриваемой местности

    Наиболее часто ЧС, связанные с взрывами газа , возникают при эксплуатации коммунального газового оборудования.

    Для предупреждения таких взрывов ежегодно проводят профилактику газового оборудования. Здания взрывоопасных цехов, сооружений, часть панелей в стенах делают легкоразрушаемыми, а крыши – легкосбрасываемыми.