История создания математического анализа. Математический анализ истории

История математического анализа

XVIII век часто называют веком научной революции, определившей развитие общества вплоть до наших дней. Базировалась эта революция на замечательных математических открытиях, совершённых в XVII веке и основанных в последующее столетие. «Нет ни одного объекта в материальном мире и ни одной мысли в области духа, на которых не отразилось бы влияние научной революции XVIII века. Ни один из элементов современной цивилизации не мог бы существовать без принципов механики, без аналитической геометрии и дифференциального исчисления. Нет ни одной отрасли в деятельности человека, которая не испытала бы на себе сильного влияния гения Галилея, Декарта, Ньютона и Лейбница». Эти слова французского математика Э. Бореля (1871 – 1956), произнесенные им в 1914 году, остаются актуальными и в наше время. В развитие математического анализа внесли свой вклад многие великие ученые: И.Кеплер (1571 -1630), Р.Декарт (1596 -1650), П.Ферма (1601 -1665), Б.Паскаль (1623 -1662), Х.Гюйгенс (1629 -1695), И.Барроу (1630 -1677), братья Я.Бернулли (1654 -1705) и И.Бернулли (1667 -1748) и другие.

Новшество этих знаменитостей в понимании и описании окружающего нас мира:

    движение, изменение и вариативность (вошла жизнь с её динамикой и развитием);

    статистические слепки и одномоментные фотографии её состояний.

Математические открытия XVII –XVII веков были определены с помощью таких понятий, как переменная, и функция, координаты, график, вектор, производная, интеграл, ряд и дифференциальное уравнение.

Паскаль, Декарт и Лейбниц были не столько математики, сколько философами. Именно общечеловеческий и философский смысл их математических открытий составляет сейчас главную ценность и является необходимым элементом общей культуры.

Как серьёзную философию, так и серьезную математику нельзя понять, не овладев соответствующим языком. Ньютон в письме к Лейбницу о решении дифференциальных уравнений излагает свой метод следующим образом: 5accdae10effh 12i…rrrssssttuu.

Античность

В античный период появились некоторые идеи, которые в дальнейшем привели к интегральному исчислению, но в ту эпоху эти идеи не были развиты строгим, систематическим образом. Расчёты объёмов и площадей, являющиеся одной из целей интегрального исчисления, можно найти в московском математическом папирусе из Египта (ок. 1820 до н. э.), но формулы являются скорее инструкциями, без каких-либо указаний на метод, а некоторые просто ошибочны. В эпоху греческой математики Евдокс (ок. 408-355 до н. э.) для вычисления площадей и объёмов использовал метод исчерпывания , который предвосхищает понятие предела, а позже эту идею дальше развил Архимед (ок. 287-212 до н. э.), изобретя эвристики , которые напоминают методы интегрального исчисления. Метод исчерпывания позже изобрёл в Китае Лю Хуэй в III веке нашей эры, который он использовал для вычисления площади круга. В V нашей эры Цзу Чунчжи разработал метод вычисления объёма шара, который позже назовут принципом Кавальери .

Средневековье

В XIV веке индийский математик Мадхава Сангамаграма и астрономо-математическая школа Керала ввели многие компоненты исчисления, такие как ряды Тейлора , аппроксимацию бесконечных рядов , интегральный признак сходимости , ранние формы дифференцирования, почленное интегрирование, итерационные методы для решения нелинейных уравнений и определение того, что площадь под кривой является её интегралом. Некоторые считают, что «Юктибхаза» (Yuktibhāṣā) является первым трудом по математическому анализу.

Современная эпоха

В Европе основополагающим трудом стал трактат Бонавентура Кавальери , в котором он утверждал, что объёмы и площади могут быть рассчитаны как суммы объёмов и площадей бесконечно тонкого сечения. Идеи были похожи на то, что изложил Архимед в работе «Метод», но этот трактат Архимеда был утерян до первой половины XX века. Работа Кавальери не была признана, так как его методы могли привести к ошибочным результатам, и бесконечно малым величинам он создал сомнительную репутацию.

Формальное исследование исчисления бесконечно малых, которое Кавальери соединил с исчислением конечных разностей , проводилось в Европе примерно в это же время. Пьер Ферма , утверждая, что он заимствовал это из Диофанта , ввёл понятие «квази-равенства» (англ. adequality ), которое представляло собой равенство с точностью до бесконечно малой ошибки. Большой вклад внесли также Джон Валлис , Исаак Барроу и Джеймс Грегори . Последние два около 1675 года доказали вторую фундаментальную теорему исчисления .

Основания

В математике основания относятся к строгому определению предмета, отталкиваясь от точных аксиом и определений. На начальном этапе развития исчисления использование бесконечно малых величин считалось нестрогим, оно подвергалось жёсткой критике рядом авторов, в первую очередь Мишелем Роллем и епископом Беркли . Беркли превосходно описал бесконечно малые как «призраки умерших количеств» в своей книге «The Analyst» в 1734 году. Разработка строгих основ для исчисления заняло математиков на протяжении более столетия после Ньютона и Лейбница, и до сих пор сегодня в некоторой степени является активной областью исследований.

Несколько математиков, в том числе Маклорен , пытались доказать обоснованность использования бесконечно малых, но это удалось сделать только 150 лет спустя трудами Коши и Вейерштрасса , которые наконец-то нашли средства, как уклониться от простых «мелочёвок» бесконечно малых величин, и были положены начала дифференциального и интегрального исчисления. В трудах Коши мы находим универсальный спектр основополагающих подходов, в том числе определение непрерывности в терминах бесконечно малых и (несколько неточный) прототип (ε, δ)-определения предела в определении дифференцирования. В своём труде Вейерштрасс формализует понятие предела и устраняет бесконечно малые величины. После этого труда Вейерштрасса общей основой исчисления стали пределы, а не бесконечно малые величины. Бернхард Риман использовал эти идеи, чтобы дать точное определение интеграла. Кроме того, в этот период идеи исчисления были обобщены на евклидово пространство и на комплексную плоскость .

В современной математике основы исчисления включаются в раздел вещественного анализа , который содержит полные определения и доказательства теорем исчисления. Сфера исследований исчисления стала значительно шире. Анри Лебег разработал теорию мер множества и использовал её для определения интегралов от всех функций, кроме самых экзотических. Лоран Шварц ввёл в рассмотрение обобщённые функции , которые можно использовать для вычисления производных любой функции вообще.

Введение пределов определило не единственный строгий подход к основанию исчисления. Альтернативой может быть, например, нестандартный анализ Абрахама Робинсона . Подход Робинсона, разработанный в 1960-е годы, использует технические средства из математической логики для расширения системы вещественных чисел бесконечно малыми и бесконечно большими числами, как это было в исходной концепции Ньютона-Лейбница. Эти числа, называемые гипердействительными , можно использовать в обычных правилах исчисления, подобно тому, как это делал Лейбниц.

Важность

Хотя некоторые идеи исчисления ранее были разработаны в Египте , Греции , Китае , Индии , Ираке, Персии и Японии , современное использование исчисления началось в Европе в XVII веке, когда Исаак Ньютон и Готфрид Вильгельм Лейбниц построили на базе работ предшествующих математиков его основные принципы. Развитие исчисления было основано на более ранних концепциях мгновенного движения и площади под кривой.

Дифференциальное исчисление применяется в расчётах, связанных со скоростью и ускорением , углом наклона кривой и оптимизацией . Применение интегрального исчисления включает расчёты с участием площадей , объёмов , длин дуг , центров масс , работы и давления . Более сложные приложения включают расчёты степенных рядов и рядов Фурье .

Исчисление [ ] также используется для получения более точного представления о природе пространства, времени и движения. Веками математики и философы боролись с парадоксами, связанными с делением на ноль или нахождением суммы бесконечного ряда чисел. Эти вопросы возникают при изучении движения и вычислении площадей. Древнегреческий философ Зенон Элейский дал несколько известных примеров таких парадоксов . Исчисление предоставляет инструменты для разрешения этих парадоксов, в частности, пределы и бесконечные ряды.

Пределы и бесконечно малые величины

Примечания

  1. Morris Kline, Mathematical thought from ancient to modern times , Vol. I
  2. Archimedes, Method , in The Works of Archimedes ISBN 978-0-521-66160-7
  3. Dun, Liu; Fan, Dainian; Cohen, Robert Sonné. A comparison of Archimdes" and Liu Hui"s studies of circles (англ.) : journal. - Springer, 1966. - Vol. 130 . - P. 279 . - ISBN 0-792-33463-9 . , Chapter, p. 279
  4. Zill, Dennis G.; Wright, Scott; Wright, Warren S. Calculus: Early Transcendentals (неопр.) . - 3. - Jones & Bartlett Learning (англ.) русск. , 2009. - С. xxvii. - ISBN 0-763-75995-3 . , Extract of page 27
  5. Indian mathematics
  6. von Neumann, J., «The Mathematician», in Heywood, R. B., ed., The Works of the Mind , University of Chicago Press, 1947, pp. 180-196. Reprinted in Bródy, F., Vámos, T., eds., The Neumann Compedium , World Scientific Publishing Co. Pte. Ltd., 1995, ISBN 9810222017 , pp. 618-626.
  7. André Weil: Number theory. An approach through history. From Hammurapi to Legendre. Birkhauser Boston, Inc., Boston, MA, 1984, ISBN 0-8176-4565-9 , p. 28.
  8. Leibniz, Gottfried Wilhelm. The Early Mathematical Manuscripts of Leibniz. Cosimo, Inc., 2008. Page 228. Copy
  9. Unlu, Elif Maria Gaetana Agnesi (неопр.) . Agnes Scott College (April 1995). Архивировано 5 сентября 2012 года.

Ссылки

  • Ron Larson, Bruce H. Edwards (2010). «Calculus», 9th ed., Brooks Cole Cengage Learning. ISBN 978-0-547-16702-2
  • McQuarrie, Donald A. (2003). Mathematical Methods for Scientists and Engineers , University Science Books. ISBN 978-1-891389-24-5
  • James Stewart (2008). Calculus: Early Transcendentals , 6th ed., Brooks Cole Cengage Learning.

Слайд 2

Математи́ческийана́лиз - совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Слайд 3

Метод исчерпывания

Античный метод для исследования площади или объёма криволинейных фигур.

Слайд 4

Метод заключался в следующем: для нахождения площади (или объёма) некоторой фигуры в эту фигуру вписывалась монотонная последовательность других фигур и доказывалось, что их площади (объёмы) неограниченно приближаются к площади (объёму) искомой фигуры.

Слайд 5

В 1696 Лопиталь написал первый учебник, излагавший новый метод в применении к теории плоских кривых. Он назвал его Анализ бесконечно малых, дав тем самым и одно из названий новому разделу математики. Во введении Лопиталь излагает историю возникновения нового анализа, останавливаясь на работах Декарта, Гюйгенса, Лейбница, а также выражает свою благодарность последнему и братьям Бернулли.

Слайд 6

Термин «функция» впервые появляется лишь в 1692 у Лейбница, однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта или аналитическое выражение.

Слайд 7

«Теория аналитических функций» («Th.orie des fonctions analytiques», 1797). В «Теории аналитических функций» Лагранж излагает свою знаменитую интерполяционную формулу, которая вдохновила Коши на разработку строгого обоснования анализа.

Слайд 8

В учебниках по математическому анализу можно найти важную лемму Ферма. Так же он сформулировал общий закон дифференцирования дробных степеней.

Пьер де Ферма́ (17 августа 1601 - 12 января 1665) - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Ферма практически по современным правилам находил касательные к алгебраическим кривым.

Слайд 9

Рене́ Дека́рт(31 марта 1596 - 11 февраля 1650) - французский математик, философ, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики. В 1637 году вышел в свет главный математический труд Декарта, «Рассуждение о методе» В этой книге излагалась аналитическая геометрия, а в приложениях - многочисленные результаты в алгебре, геометрии, оптике и многое другое. Особо следует отметить переработанную им математическую символику Виета: он ввел общепринятые теперь знаки для переменных и искомых величин (x, y, z, ...) и для буквенных коэфф. (а, b, c, ...)

Слайд 10

Франсуа́ Вие́т(1540 -1603) - французский математик, основоположник символической алгебры. По образованию и основной профессии - юрист. В 1591 ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

Слайд 11

Галиле́оГалиле́й(15 февраля1564, Пиза - 8 января1642) - итальянскийфизик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени Cформулировал «парадокс Галилея»: натуральных чисел столько же, сколько их квадратов, хотя большая часть чисел не являются квадратами. Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств.

Слайд 12

«Новая стереометрия винных бочек»

Когда Кеплер покупал вино, он был изумлен тем, как торговец определял вместимость бочки. Продавец брал палкус делениями, и с ее помощью определял расстояние от наливного отверстия до самой дальней точки бочки. Проделав это, он сразу же говорил, сколько литров вина в данной бочке. Так ученый первым обратил внимание на класс задач, исследование которых привело к созданию интегрального исчисления.

Слайд 13

Так, например, для нахождения формулы объема тора Кеплер разбил его меридиональными сечениями на бесконечное количество кружков, толщина которых с внешней стороны была несколько большей, чем с внутренней. Объем такого кружка равен объему цилиндра с основанием, равным сечению тора, и высотой, равной толщине кружка в его средней части. Отсюда сразу получалось, что объем тора равен объему цилиндра, у которого площадь основания равна площади сечения тора, а высота равна длине окружности, которую описывает точка F - центр сечения тора.

Слайд 14

Метод неделимых

Теоретическое обоснование нового метода нахождения площадей и объёмов предложил в 1635 году Кавальери. Он выдвинул следующий тезис: Фигуры относятся друг к другу, как все их линии, взятые по любой регуле [базе параллельных], а тела - как все их плоскости, взятые по любой регуле.

Слайд 15

Например вычислим площадь круга. Формула для длины окружности: считается известной. Разобьём круг (слева на рис. 1) на бесконечно малые кольца. Рассмотрим также треугольник (справа на рис. 1) с длиной основания L и высотой R, который тоже разобъём сечениями параллельно основанию. Каждому кольцу радиуса R и длины можно сопоставить одно из сечений треугольника той же длины. Тогда, по принципу Кавальери, их площади равны. А площадь треугольника найти несложно: .

Слайд 16

Над презентацией работали:

Жарков Александр Киселева Марина Рясов Михаил Чередниченко Алина

Посмотреть все слайды

В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.

Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.

«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье

Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.

Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.

Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.

Каковы же предпосылки появления математического анализа?

К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.

Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.

НИКОЛАЙ НИКОЛАЕВИЧ ЛУЗИН
(1883-1950)

Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).

Лузин родился в Томске, учился в томской гимназии. Формализм гимназического курса математики оттолкнул от себя талантливого юношу, и лишь способный репетитор смог раскрыть перед ним красоту и величие математической науки.

В 1901 г. Лузин поступил на математическое отделение физико-математического факультета Московского университета. С первых лет обучения в круг его интересов попали вопросы, связанные с бесконечностью. В конце XIX в. немецкий ученый Г. Кантор создал общую теорию бесконечных множеств, получившую многочисленные применения в исследовании разрывных функций. Лузин начал изучать эту теорию, но его занятия были прерваны в 1905 г. Студенту, принимавшему участие в революционной деятельности, пришлось на время уехать во Францию. Там он слушал лекции виднейших французских математиков того времени. По возвращении в Россию Лузин окончил университет и был оставлен для подготовки к профессорскому званию. Вскоре он вновь уехал в Париж, а затем в Геттинген, где сблизился со многими учеными и написал первые научные работы. Основной проблемой, интересовавшей ученого, был вопрос о том, могут ли существовать множества, содержащие больше элементов, чем множество натуральных чисел, но меньше, чем множество точек отрезка (проблема континуума).

Для любого бесконечного множества, которое можно было получить из отрезков с помощью операций объединения и пересечения счетных совокупностей множеств, эта гипотеза выполнялась, и, чтобы решить проблему, нужно было выяснить, какие еще есть способы конструирования множеств. Одновременно Лузин изучал вопрос, можно ли представить любую периодическую функцию, даже имеющую бесконечно много точек разрыва, в виде суммы тригонометрического ряда, т.е. суммы бесконечного множества гармонических колебаний. По этим вопросам Лузин получил ряд значительных результатов и в 1915 г. защитил диссертацию «Интеграл и тригонометрический ряд», за которую ему сразу присудили ученую степень доктора чистой математики, минуя существовавшую в то время промежуточную степень магистра.

В 1917 г. Лузин стал профессором Московского университета. Талантливый преподаватель, он привлекал к себе наиболее способных студентов и молодых математиков. Своего расцвета школа Лузина достигла в первые послереволюционные годы. Ученики Лузина образовали творческий коллектив, который шутливо называли «лузитанией». Многие из них получили первоклассные научные результаты еще на студенческой скамье. Например, П. С. Александров и М. Я. Суслин (1894-1919) открыли новый метод конструирования множеств, что послужило началом развития нового направления - дескриптивной теории множеств. Исследования в этой области, проводившиеся Лузиным и его учениками, показали, что обычных методов теории множеств недостаточно для решения многих возникавших в ней проблем. Научные предвидения Лузина полностью подтвердились в 60-е гг. XX в. Многие ученики Н. Н. Лузина стали впоследствии академиками и членами-корреспондентами АН СССР. Среди них П. С. Александров. А. Н. Колмогоров. М. А. Лаврентьев, Л. А. Люстерник, Д. Е. Меньшов, П. С. Новиков. Л. Г. Шнирельман и другие.

Современные советские и зарубежные математики в своих работах развивают идеи Н. Н. Лузина.

Стечение этих обстоятельств и привело к тому, что в конце XVII в. двум ученым – И. Ньютону и Г. Лейбницу – независимо друг от друга удалось создать для решения названных задач математический аппарат, подытоживший и обобщивший отдельные результаты предшественников, среди которых и ученый древности Архимед и современники Ньютона и Лейбница – Б. Кавальери, Б. Паскаль, Д. Грегори, И. Барроу. Этот аппарат и составил основу математического анализа – нового раздела математики, изучающего различные развивающиеся процессы, т.е. взаимосвязи переменных величин, которые в математике называют функциональными зависимостями или, иначе, функциями. Кстати, сам термин «функция» потребовался и естественно возник именно в XVII в., а к настоящему времени он приобрел не только общематематическое, но и общенаучное значение.

Начальные сведения об основных понятиях и математическом аппарате анализа даны в статьях «Дифференциальное исчисление» и «Интегральное исчисление».

В заключение хотелось бы остановиться только на одном общем для всей математики и характерном для анализа принципе математического абстрагирования и в этой связи объяснить, в каком виде математический анализ изучает переменные величины и в чем секрет такой универсальности его методов для изучения всевозможных конкретных развивающихся процессов и их взаимосвязей.

Рассмотрим несколько поясняющих примеров и аналогий.

Мы порой уже не отдаем себе отчета в том, что, например, математическое соотношение , написанное не для яблок, стульев или слонов, а в отвлеченном от конкретных объектов абстрактном виде, - выдающееся научное завоевание. Это математический закон, который, как показывает опыт, применим к различным конкретным объектам. Значит, изучая в математике общие свойства отвлеченных, абстрактных чисел, мы тем самым изучаем количественные соотношения реального мира.

Например, из школьного курса математики известно, что , поэтому в конкретной ситуации вы могли бы сказать: «Если мне для перевозки 12 т грунта не выделят два шеститонных самосвала, то можно запросить три четырехтонки и работа будет выполнена, а если дадут только одну четырехтонку, то ей придется сделать три рейса». Так привычные теперь для нас отвлеченные числа и числовые закономерности связаны с их конкретными проявлениями и приложениями.

Примерно так же связаны законы изменения конкретных переменных величин и развивающихся процессов природы с той абстрактной, отвлеченной формой-функцией, в которой они появляются и изучаются в математическом анализе.

Например, абстрактное соотношение может быть отражением зависимости кассового сбора у кинотеатра от количества проданных билетов, если 20 – это 20 копеек – цена одного билета. Но если мы едем по шоссе на велосипеде, проезжая 20 км в час, то это же соотношение можно истолковать как взаимосвязь времени (часов) нашей велосипедной прогулки и покрытого за это время расстояния (километров)., вы всегда можете утверждать, что, например, изменение в несколько раз приводит к пропорциональному (т.е. во столько же раз) изменению величины , а если , то верно и обратное заключение. Значит, в частности, для увеличения кассового сбора кинотеатра в два раза вам придется привлечь вдвое больше зрителей, а для того, чтобы на велосипеде с той же скоростью проехать вдвое большее расстояние, вам придется ехать вдвое дольше.

Математика изучает и простейшую зависимость , и другие, значительно более сложные зависимости в отвлеченном от частной интерпретации, общем, абстрактном виде. Выявленные в таком исследовании свойства функции или методы изучения этих свойств будут носить характер общих математических приемов, заключений, законов и выводов, применимых к каждому конкретному явлению, в котором встречается изученная в абстрактном виде функция, независимо от того, к какой области знания это явление относится.

Итак, математический анализ как раздел математики оформился в конце XVII в. Предметом изучения в математическом анализе (как он представляется с современных позиций) являются функции, или, иначе, зависимости между переменными величинами.

С возникновением математического анализа математике стало доступно изучение и отражение развивающихся процессов реального мира; в математику вошли переменные величины и движение.

В следующие 10 лет естественные науки сблизятся с гуманитарными для ответа на сложные вопросы человечества. И язык математики будет играть в этом огромную роль. Станут возможными открытия новых тенденций истории, их объяснения, а в будущем даже предсказания того, что произойдёт. Так считает исследователь истории Жан-Батист Мишель (Jean-Baptiste Michel), который в феврале этого года выступая на TED, изложил свою точку зрения на то, чем математика может быть полезна историкам.

В своем коротком (6 мин.) выступлении Жан-Батист Мишель рассказывает о том, что оцифрованная история находится на пути раскрытия глубоких базовых тенденций, таких как перемены в языке или смертоносность войн.


Текст выступления

Оказывается, язык математики является мощным инструментом. Он способствовал значительному прогрессу в физике, биологии и экономике, однако не в гуманитарных науках и истории. Возможно, люди думают, что это невозможно — невозможно подсчитать деяния человечества или измерить историю. Однако я думаю иначе. Вот несколько примеров.

Мы с моим коллегой Эрезом размышляли вот о чём: два короля, живущие в разных столетиях, говорят на абсолютно разных языках. Это мощная историческая сила.Например, словарный запас и правила грамматики, используемые королём Англии Альфредом Великим, сильно отличались от речи короля хип-хопа Джей-Зи. (Смех)Ничего не поделаешь. Со временем язык меняется, и это влиятельный фактор.

Мы с Эрезом хотели узнать об этом побольше. Поэтому мы обратились к классу спряжения прошедшего времени, где окончание "-ed" у глагола обозначает действие в прошедшем времени. "Today I walk." [Я гуляю сегодня] "Yesterday I walked." [Я гулял вчера]. Но не все глаголы являются правильными. Например, "Yesterday I thought." [Вчера я размышлял]. Любопытно, что сегодня во времена Джей-Зи у нас больше правильных глаголов, нежели их было во времена Альфреда. Например, глагол "to wed" [жениться] стал правильным.

Мы с Эрезом проследили судьбы более 100 неправильных глаголов за 12 веков истории английского языка и заметили, что это сложное историческое изменениеможно обобщить довольно простой математической формулой: если глагол используется в 100 раз чаще других, он становится правильным в 10 раз медленней.Вот вам исторический факт в математической обертке.

В некоторых случаях математика помогает объяснить или предложить версии для исторических событий. Вместе со Стивом Пинкером мы размышляли над масштабами войн двух прошлых веков. Существует известная закономерность: войны, унёсшие в 100 раз больше жизней, случались в 10 раз реже. Например, 30 войн по смертоносности сходные с Шестидневной войной, и только 4 войны, унёсшие в 100 раз больше жизней, как это сделала Первая мировая война. Так какой же исторический механизм приводит к этому? Какова первопричина?

Используя математический анализ, мы со Стивом полагаем, что в основе лежит очень простое свойство нашего мозга. Это хорошо известное свойство понимания относительных величин, таких как интенсивность светового потока или громкость.Например, если для битвы нам нужно мобилизовать 10 000 солдат, цифра покажется нам огромной, особенно если в прошлый раз были мобилизованы только 1 000 солдат.Но это совсем не много, относительно немного, никто и не заметит, если к данному моменту были мобилизованы 100 000 солдат. Из-за того, как мы представляем величины, по мере продолжения войны количество мобилизованных и раненых будет увеличиваться не линейно — 10 000, 11 000, 12 000, а экспоненциально: 10 000, 20 000, 40 000. Этим объясняется модель, о которой мы говорили ранее.

Математика способна связать известные свойства человеческого мозга с долговременной исторической моделью, которая простирается на века и континенты.

Думаю, эти пару примеров станут обычным явлением в последующие 10 лет. Это станет возможным благодаря высокой скорости оцифровки исторических документов.С начала времён было написано около 130 миллионов книг. Многие книги были оцифрованы компаниями вроде Google — более 20 миллионов книг. Когда исторические факты доступны в цифровой форме, можно легко и быстро просмотреть тенденции нашей истории и культуры, используя математический анализ.

Поэтому, я думаю, в следующие 10 лет естественные науки сблизятся с гуманитарными для ответа на сложные вопросы человечества. И язык математики будет играть в этом огромную роль. Станут возможными открытия новых тенденций истории, их объяснения, а в будущем даже предсказания того, что произойдёт.

Большое спасибо.

(Аплодисменты)

Перевод: Olga Dmitrochenkova