Что входит в состав ядра физика. Атомное ядро

Бурное развитие мировой промышленности и ее глобальная диверсификация пришлись на золотой век мировой экономики, который закончился крахом Lehmann Brothers. Эксперты составили свой прогноз развития основных отраслей мировой промышленности на ближайшие десятилетия

Лондон. 15 июля. FINMARKET.RU - 150 лет назад, в XIX веке, центр промышленного производства переместился из Китая в Великобританию. В последние 25 лет все вернулось на свои места: промышленное производство вернулось в развивающиеся страны. В это же время появились новые отрасли промышленности: прорыв произошел в биотехнологиях, информационных технологиях и в других направлениях.

Бурное развитие мировой промышленности и ее глобальная диверсификация пришлись на золотой век мировой экономики, который закончился в 2008 году крахом Lehmann Brothers. В Chatham House - одном из самых известных британских аналитических центров - подвели итоги развития мировой промышленности и подготовили прогноз на несколько десятков лет вперед. Эксперты также детально проанализировали состояние трех ключевых отраслей мировой промышленности - авиа- и автомобилестроения и фармацевтики - и торговли.

Четыре тенденции мировой промышленности: производство становится сложнее и перемещается в развивающиеся страны

  • Доля промышленности все меньше. Доля промышленности в мировом ВВП сокращается уже несколько лет подряд. В развитых странах на сектор услуг приходится все большая доля. Но доля промышленности упала в выпуске Африки и Латинской Америки.
  • В Азии доля промышленности в ВВП постоянна. Но эта стабильность иллюзорна: в Японии она снизилась, а в Китае - выросла. При этом в Индии и Южной Корее она мало изменилась.
  • При этом во всех регионах мира выросла доля услуг в ВВП, что значительно усилило темпы роста. Доля сельского хозяйства сократилась.
  • Доля промышленности в ВВП начала расти только после завершения глобального кризиса. Тогда в развитых странах начались дебаты о сокращении финансового сектора и новой промышленной политике.

Доля промышленности в мировом ВВП сокращается

  • Производство уходит в развивающиеся страны . 15 лет назад на долю развивающихся стран приходилось лишь 20% добавленной стоимости в промышленности, сегодня - уже треть. При этом промышленность в развивающихся странах продолжает расти.
  • Настоящей звездой стал Китай: в 2000 году он был самым крупным производителем в трех отраслях - табачной, текстильной и производстве товаров из кожи. 10 лет спустя Китай стал лидером в производстве одежды, изделий из резины и пластика, металлургии, электрического оборудования и машин. В 2011 году он перегнал США как промышленный производитель номер один в мире.

На развивающиеся страны приходится все больше добавленной стоимости в промышленности

  • Промышленность становится все сложнее. Еще одна важная тенденция - вторжение промышленных технологий в новые отрасли, вроде IT. Особенно эта тенденция заметна в развитых странах, где, практически, не осталось фабрик по производству обуви или одежды.
  • В развивающихся странах росли все отрасли производства: текстильная, производство металлов и оборудования, медицинской техники. Эти товары производились как для внутреннего пользования, так и на экспорт.
  • Мир зависит от ТНК. На этот же период пришелся рост значения транснациональных корпораций. Во многом из-за их инвестиций в развивающие страны. С помощью этих инвестиций передается не только капитал как таковой, но и технологии, и способы ведения бизнеса. Все больше транснациональных корпораций появляются в развивающихся странах.

Рост спроса в развивающихся странах и демография меняют лицо мировой промышленности

Спрос меняет промышленность: старое и богатое население земли хочет совсем других товаров

  • Рост промышленности в том или ином регионе, в первую очередь, зависит от внутреннего спроса. К 2020 году, согласно оценке ООН, наиболее быстро будет расти население наименее развитых стран мира.
  • Также на потребление повлияет процесс старения населения: это происходит повсеместно, но с разной скоростью и с разного старта. Кроме того, на потребление влияют сокращение размера домохозяйств и урбанизация.
  • Рост доходов на душу населения в развивающихся странах будет быстрее, чем в развитых. К 2020 году именно на развивающиеся придется 3/4 роста покупательской способности в мире. Доля Китая и Индии в этом росте составит 43%.

Потребление в мире будет расти за счет развивающихся стран

  • Эластичность спроса по доходам также меняется в зависимости от сектора и уровня развития страны: когда уровень доходов низкий, их рост приводит к росту потребления товаров первой необходимости - еды, одежды и других. По мере роста доходов все чаще покупаются более дорогие товары вроде бытовой техники. Именно поэтому их производство растет.
  • В мире стремительно растет средний класс: в ближайшие восемь лет в странах вырастут группы населения с доходами $5-10 тыс и $10-20 тыс. - к 2020 году их будет на 650 млн больше. 2/3 этого роста придется на Индию и Китай. Новый средний класс будет активно тратить. Это приведет к росту спроса на автомобили и самолеты, ведь люди будут чаще путешествовать.
  • В развитых странах после кризиса население будет тратить неохотно. Но все же ему придется увеличить расходы на здравоохранение из-за старения населения.

Мировой средний класс растет

  • Изменят мировую промышленность и новые вкусы потребителей: жители развивающихся стран перенимают западные ценности. Мировые бренды формируют спрос на новые товар. Примеры уже можно найти в Китае: там стремительно растет потребление кофе и шоколада. В развивающихся странах все большее значение имеют бренды и мода.

Предложение: все зависит от рынка труда

  • Главный фактор на рынке труда - это наличие рабочей силы. В этом смысле выиграют развивающиеся страны: именно в них в ближайшие годы будет расти возрастная группа 15-59 лет. Всего в мире эта возрастная группа пополнится на 450 млн человек, 120 млн из которых будет жить в Индии. В Китае их доля не изменится.
  • Это уже бьет по конкурентоспособности Китая: зарплаты на побережье растут быстрее производительности труда. С 2005 по 2010 года средняя зарплата в Китае росла на 19% в год против 5% в США.
  • Это связано не только с нехваткой рабочей силы, но и с изменением экономической модели Китая: экономика двигается в сторону потребления и производства более сложной продукции. В итоге, промышленность перемешается вглубь страны и в другие бедные страны, например, Вьетнам, Индию, Бангладеш и Индонезию.

В Китае зарплаты растут слишком быстро

  • В развитых странах с этим еще какое-то время будут проблемы: банки и компании боятся вкладывать деньги, а у правительств их нет. А вот в развивающимся мире достаточно сбережений для инвестиций.
  • Кроме того, на будущее промышленности влияет технический прогресс: инновации активно происходят в компьютерной сфере, биотехнологиях, генной инженерии. 3d-принтеры обещают изменить лицо мировой промышленности. Все это может привести к появлению новых отраслей.

Многое зависит от политики, которую проводят правительства, например, в сфере управления обменными курсами, стимулирования экспорта, субсидий для инвестиций и других областях.

Яркий пример такой политики - это последний кризис. Тогда правительства потратили миллиарды долларов на поддержку банков и финансовой системы. В США правительство помогло автомобильным компаниям.

Авиастроение: пока на рынке господствуют США и Европа, но их влияние падает

  • Лидерами в секторе являются Европа и США. Их главенству угрожают, главным образом, Канада и Бразилия, которые также начали развивать свое авиастроение.
  • Некоторые страны уже строят аналогичные планы. Среди них Южная Африка и Индонезия, которые уже предприняли несколько попыток увеличить долю на рынке, но пока безрезультатно.
  • Свои планы по экспансии есть у Японии, Китая, Индии и России. Преуспел в их реализации Китай, активно заключающий контакты с европейскими и американскими компаниями, которые в обмен на технологии получают доступ на рынок внутренних авиаперевозок.
  • Американским и европейским компаниям волей-неволей придется переносить производственные мощности в Азию, чтобы сохранить преимущества и быть ближе к рынку сбыта.
  • Снижение конкурентоспособности в авиастроение больно ударит по экономике Европы и США. Авиасектор - один из немногих, торговый баланс США по которым положительный. В 2011 году он принес стране профицит в $55 млрд. Профицит ЕС по торговому счету по этому сектору составляет $34 млрд. Сектор обеспечивает обеим экономикам стабильную занятость.

Спрос на самолеты будет расти

Автомобилестроение: рост обеспечат развивающиеся страны

Автомобильной промышленности принадлежит ключевая роль в технологическом, социальном и политическом развитие планеты в XX веке. В мире в создание автомобилей вовлечено 90 миллионов человек - 5% всей мировой рабочей силы.

Если автомобилестроение было бы отдельной страной, то она входила бы в десятку самых крупных экономик мира. Каждое дополнительное созданное рабочее место в автомобилестроение приводит к созданию пяти дополнительных рабочих мест в смежных секторах.

  • В мире автомобили производят 40 стран. Однако создавать новые модели могут далеко не все.
  • Развивающиеся страны все быстрее становятся главными производителями. Причем сложно объяснить, почему это происходит: влияет и рост спроса на автомобили, и дешевизна их производства.
  • В 2006-2008 годах в мире производили рекордное количество автомобилей - 70 млн штук в год. В 2009 году, после кризиса их производство упало до 62 млн штук - примерно столько же производилось в 2003-2004 годах. Но уже в 2012 году был побит новый рекорд - 84 млн.
  • За последнее десятилетие отрасль росла на 3% в год. При этом доля США и Японии, на которые приходилось 38% мирового производства автомобилей в 2001 году, снизилась до 21% в 2011 году.
  • В 2009 году Китай обошел Японию по производству автомобилей, а уже через год он производил в два раза больше, чем сосед.
  • В 2009 году развивающиеся страны производили больше автомобилей, чем тройка - Япония, Северная Америка и Западная Европа. С 2001 по 2011 годы доля развивающихся стран в производстве автомобилей выросла с 27% до 57%. Доля стран БРИК за тот же период выросла с 11% до 34%.
  • К 2020 году в мире будет производится 100 млн автомобилей. Продажи будут расти на 2,5-3,5% в год. Главный вклад в рост внесет Азия.

Развитые страны проигрывают битву за автомобилестроение

Фармацевтика: вперед к новым бизнес-моделям

В последние десятилетия прошлого века в фармацевтике произошла настоящая революция: стало легче открывать новые лекарства, общественный спрос на продукты здравоохранения вырос, а многие страны начали инвестировать в системы здравоохранения. Однако в последние годы в этой модели начали появляться серьезные проблемы.

  • Лекарства-"блокбастеры", на которых зарабатывали многие компании, оказались не по карману многим системам здравоохранения и больным людям. Появились вопросы, почему лекарства так дорого стоят.
  • Фармацевтические компании пытались оправдать это высоким качеством продукции. Но для клиентов важна цена.
  • При этом растет производство дженериков: когда патенты заканчиваются, появляется множество копий лекарства. Это сокращает прибыль брендов.
  • Компаниям становится невыгодно вкладывать в новые продукты: разработать их сложно, а требования к качеству и безопасности растут.
  • В итоге, снижается прибыль компаний, а в секторе начинается консолидация. Фармацевтическую отрасль ждет серьезная трансформация.
  • Тем не менее, в ближайшие годы сектор будет расти быстрее, чем мировая экономика. Во многом за счета азиатских стран, где рост среднего класса увеличит спрос на лекарства.

Получить одобрение на производство лекарства все сложнее

Рост сектора серьезно замедлился

Торговля: будущее за крупными торговыми центрами

Розничная торговля также полностью изменится: в развитых странах продажи падают в результате экономического кризиса, а в развивающихся структура продаж меняется благодаря росту доходов и урбанизации.

  • Розничные продажи могут принять множество разновидностей - от продаж в интернете или в современных торговых центрах до базаров.
  • В развивающихся странах все большей популярностью пользуются современные торговые центры, а в развитых странах - магазины шаговой доступности.
  • Развитие отрасли зависит от уровня жизни в развивающихся странах, особенно в Китае и Азии.
  • В 2008 году на долю Северной Америки и Европы в розничной торговли приходилось 53%, но к 2014 году их доля снизится до 43%. Их доля будет лишь немногим выше доли Азиатско-Тихоокеанского региона.
  • По мере того, как жители развивающихся стран богатеют, их потребительские привычки будут походить на потребительские привычки жителей развитых стран. Богатые домохозяйства все чаще будут тратиться на различные товары роскоши и развлечений. Расходы на продукты питания будут расти медленнее.
  • Помимо роста доходов на потреблении скажется также старение населения и повышение уровня образования.
  • В будущем будет расти рыночная доля супер- и гипермаркетов. Некоторые сферы розничной торговли, например, потребление аудио и видеопродукции переместится в интернет.
  • В целом магазины в развивающихся странах быстро позаимствуют опыт и практики у конкурентов из развитых стран. Многие торговые сети из развивающихся стран попробуют проводить экспансию. Но глобальная экспансия ритейлеров пока затруднительна.

Розничная торговля будет расти за счет развивающихся стран

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Модели строения ядра.

Как пpедставить ядpо? Это непpостой вопpос, и было пpедложено несколько моделей ядpа. Наиболее популяpными и используемыми к настоящему вpемени являются две модели: капельная и оболочечная.

Согласно капельной модели ядpо сpавнивается с каплей жидкости, т.к. между каплей жидкости и ядpом много общего. Главная общая чеpта заключается в том, что взаимодействие между молекулами жидкой капли, как и между нуклонами ядpа, обладает свойством насыщения: каждая молекула окpужена лишь вполне опpеделенным числом соседей. Силы взаимодействия между молекулами в капле коpоткодействующие. Объем капли pастет, как и у ядpа, пpопоpционально числу молекул. Сpавнение ядpа с каплей наводит еще на одну важную мысль: капля жидкости обладает повеpхностным натяжением. Есть основание считать, что и ядpо-капля обладает этим свойством. Повеpхностное натяжение стягивает каплю и делает ее шаpообpазной. Поэтому и ядpо, можно сказать, имеет шаpовую фоpму. Имеются и pазличия между каплей жидкости и ядpом атома. Ядpо заpяжено (пpотоны!), капля же обычно нейтpальна (хотя ее специально можно и заpядить). Главное же отличие в том, что капля - классическая система и в ней энеpгия - непpеpывная величина, а ядpо - типично квантовая система и его энеpгия имеет дискpетный спектp.

В оболочечной модели ядpо сpавнивается с атомом, котоpый имеет оболочечную стpуктуpу: центp атома, в котоpом сосpедоточено ядpо, окpужен слоями электpонной оболочки. На пеpвый взгляд кажется, что ядpо ничего общего не должно иметь с атомом, так как в ядpе нет никакого физически выделенного центpа, вокpуг котоpого могли бы pасполагаться слои из нуклонов. Однако нужно учесть квантовую стpуктуpу и ядpа, и атома. Ведь слои электpонной оболочки атома создаются благодаpя тому, что дискpетный энеpгетический спектp атомов таков: его энеpгетические уpовни pаспадаются на pяд сpавнительно близко лежащих гpупп, заполнение уpовней котоpых и составляет слои оболочек из электpонов. Оказалось, что спектpы энеpгии ядеp в этом отношении напоминают спектpы атомов: они также составляют гpуппы близко pасположенных уpовней. Потому постепенное заполнение нуклонами этих гpупп уpовней напоминает электpонные слои атомов. Так стpоится оболочечная модель ядеp.

Ядерные силы.

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов.

Ядерные силы – силы, действующие между ядерными частицами – нуклонами.

Свойства ядерных сил:

1. Это короткодействующие силы, действуют на расстояниях между нуклонами, порядка 10 −15 м, и резко убывают при увеличении расстояния; при расстояниях 1,4 ∙ 10 −15 м они уже практически равны 0.

2. Это самые мощные силы из всех, которыми располагает природа , поэтому взаимодействие частиц в ядре часто называют сильными взаимо­действиями.

3. Ядерным силам свойственно насыщение, т.е. нуклон взаимодействует не со всеми остальными нуклонами, а лишь с некоторыми ближайшими соседями.

4. Ядерным силам свойственна зарядовая независимость. Это значит, что с одинаковой по модулю силой притягиваются друг к другу и заря­женные, и незаряженные частицы, т.е. сила притяжения F рр между двумя протонами равна силе притяжения F пп между двумя нейтронами и равна силе притяжения F рп между протоном и нейтроном.

5. Ядерные силы не являются центральными, т.е. они не направлены вдоль прямой, соединяющей центры этих зарядов.

6. Ядерные силы являются так называемыми обменными силами.

Напоминаю, что различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии порядка 10 -13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются мате­риальные системы с высокой энергией связи - атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон - квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10 -15 - 10 -22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие - самое слабое, не учитываемое в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10 -13 см оно дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (порядка 10 -33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия - суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

Открытие нейтрона и протона.

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели ядра, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы – ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д. В настоящее время твердо установлено, что атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов.

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в опытах Дж. Томсона (1907 г.), которому удалось измерить у нее отношение e / m. В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер.

Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α-частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М – микроскоп.

Прибор Резерфорда состоял из вакуумированной камеры, в которой был расположен контейнер К с источником α-частиц. Окно камеры было закрыто металлической фольгой Ф, толщина которой была подобрана так, чтобы α-частицы не могли через нее проникнуть. За окном располагался экран Э, покрытый сернистым цинком. С помощью микроскопа М можно было наблюдать сцинтилляции в точках попадания на экран тяжелых заряженных частиц. При заполнении камеры азотом при низком давлении на экране возникали световые вспышки, указывающие на появление потока каких-то частиц, способных проникать через фольгу Ф, практически полностью задерживающую поток α-частиц.

Отодвигая экран Э от окна камеры, Резерфорд измерил среднюю длину свободного пробега наблюдаемых частиц в воздухе. Она оказалась приблизительно равной 28 см, что совпадало с оценкой длины пробега H-частиц, наблюдавшихся ранее Дж. Томсоном. Исследования действия на частицы, выбиваемые из ядер азота, электрических и магнитных полей показали, что эти частицы обладают положительным элементарным зарядом и их масса равна массе ядра атома водорода. Впоследствии опыт был выполнен с целым рядом других газообразных веществ. Во всех случаях было обнаружено, что из ядер этих веществ α-частицы выбивают H-частицы или протоны. По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10–22. Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.

Масса протона , по современным измерениям, равна m p = 1,67262·10–27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной 1/12 массы атома углерода с массовым числом 12:

Следовательно, m p = 1,007276 · а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc 2 . Так как 1 эВ = 1,60218·10 –19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ. Таким образом, в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов. После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, то есть при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд. В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование – частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице – нейтрон .

Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, то есть области размером R ≈ 10 –13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу.

Идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Дж. Чедвиком заняться поиском такой частицы. Через 12 лет в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон.

При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10 –20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Жолио-Кюри Ирен и Фредерик (Ирен – дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость.

Она оказалась огромной – порядка 50 МэВ. Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 2 изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона, в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать.

Действие камеры Вильсона , созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях. Дж. Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100–150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы.

Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона – частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика. Нейтрон – это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд. По современным измерениям, масса нейтрона m n = 1,67493·10–27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона. Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями.

Ядро состоит из нуклонов: протонов и нейтронов.

Г. Мозли (Англия) установил, что положительный заряд ядра атома (в условных единицах) равен порядковому номеру элемента в периодической системе Менделеева. Каждый протон имеет заряд +1, поэтому заряд ядра равен числу протонов.

Масса протона, как и масса нейтрона, приблизительно в 1840 раз больше массы электрона. Протоны и нейтроны находятся в ядре, поэтому масса атома почти равна массе ядра. Масса ядра, как и масса атома, определяется суммой числа протонов и числа нейтронов. Эта сумма называется массовым числом атома. Массовое число атома (A) = Число протонов (Z) + Число нейтронов (N) A=Z+N

Протоны и нейтроны, входящие в состав любого ядра, не являются неделимыми элементарными частицами, а состоят из кварков.

Кварки, в свою очередь, взаимодействуют друг с другом, непрерывно обмениваясь глюонами - переносчиками истинно сильного взаимодействия (оно в тысячи раз сильнее того, которое действует между протонами и нейтронами в ядре). В результате протоны и нейтроны оказываются очень сильно связанными системами, которые невозможно разбить на составные части.

Энергия связи нуклонов в ядре, дефект массы.

Устойчивость атомного ядра характеризуется энергией связи св.).

Точнейшие измерения показывают, что масса покоя ядра М всегда меньше суммы масс покоя со­ставляющих ее протонов и нейтронов: М я < Zm p + Nm n .

Дефект масс - величина, на которую уменьшается масса всех нуклонов при образовании из них атомного ядра. Дефект масс равен разности между суммой масс покоя нуклонов и массой ядра М я: ∆М= - М я, где m p , m n - массы протона и нейтрона, соответственно.

Энергия связи минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные нуклоны или энергия, выделяющаяся при слиянии свободных нуклонов в ядро. Расчетная формула энергии связи:

Е св =∆mc 2 = c 2 , где с=3·10 8 м/с – скорость света в вакууме.

Если в этой формуле массы протона, нейтрона и ядра выражены в килограммах, а скорость света - в метрах в секунду, то энергия связи Е св будет измерена в джоулях. Однако в физике атома и атомного ядра энергию ядер и элементарных частиц чаще выражают в мегаэлектрон-вольтах (МэВ): 1 МэВ = 1,6·10 - 13 Дж.

Решая соответствующие задачи, можно получить энергию связи в джоулях, а затем, если требуется, перевести ее в мегаэлектрон-вольты, разделив полученное число джоулей на 1,6·10 - 13 . Но гораздо проще получить значение энергии связи в мегаэлектрон-вольтах, если оставить массы протона, нейтрона и ядра выраженными в атомных единицах массы и умножить дефект массы ∆М не на с 2 , а на число 931 . Одной атомной единице массы соответствует энергия связи 931 МэВ. Е св =931· ∆М или Е св =931(Zm p + Nm n - М я) МэВ

Энергия связи переходит в энергию излучаемых при ядерных превращениях γ-квантов, которая равна как раз Е св , а масса которых: ∆М = Е /с 2 .

Если в результате реакции Е=∆Мc 2 > 0, то энергия выделяется, если Е=∆М c 2 < 0 - поглощается.

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи ε св.

Удельная энергия связи - энергия связи, приходящаяся на один нуклон ядра, равна отношению энергии связи Е св к массовому числу ядра атома А: ε св =Е св /А, Удельная энергия связи определяется экспериментально.

Ядерные реакции - процессы, происходящие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав ис­ходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки делится на два ядра разных атомов. При реакциях синтеза происходит превращение легких ядер в более тяжелые.

ВНИМАНИЕ: Разница между химическими и ядерными реакциями состоит в том, что в химических реакциях общее число атомов каждого определенного элемента, а также атомы, составляющие определенные вещества, остаются неизменными. В ядерных реакциях изменяются и атомы, и элементы.

Изотопы.

Изотопы - это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов Z и различное число нейтронов n. Изотопы занимают одно и то же место в периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента опреде­ляются зарядом ядра, поскольку именно он вли­яет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н - протий, 2 Н - дейтерий, 3 Н - тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1: 4500) в обычный водород. При соединении дейтерия с кис­лородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при 101,2°С и замерзает при 3,8°С. Тритий β-радиоактивен с пе­риодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы. В атомной индустрии все воз­растающую ценность для человечества представляют радиоактивные изотопы.

1 МэВ = 1,6·10 - 13 Дж; 1 а.е.м.= 1,66∙10 -27 кг.

Протонно-электронная теория

К началу $1932$ г. Было известно только три элементарные частицы: электрон, протон и нейтрон. По этой причине было сделано предположение, что ядро атома состоит с протонов и электронов (протонно-электронная гипотеза). Считалось, что в состав ядра с номером $Z$ в периодической системе элементов Д. И. Менделеева и массовым числом $A$ входит $A$ протонов и $Z-A$ нейтронов. В соответствии с этой гипотезой электроны, которые входили в состав ядра, выполняли роль «цементирующего» средства, с помощью которого положительно заряженные протоны удерживались в ядре. Сторонники протонно-электронной гипотезы состава атомного ядра считали, что $\beta ^-$ - радиоактивность -- это подтверждение правильности гипотезы. Но эта гипотеза оказалась на в состоянии объяснить результаты эксперимента и была отброшена. Одним с таких затруднений была невозможность объяснить то, что спин ядра азота $^{14}_7N$ равен единице $(\hbar)$. В соответствии с протонно-электронной гипотезой, ядро азота $^{14}_7N$ должно состоять с $14$ протонов и $7$ электронов. Спин протонов и электронов равен $1/2$. По этой причине ядро атома азота, которое состоит в соответствии с этой гипотезой с $21$ частицы, должно иметь спин $1/2,\ 3/2,\ 5/2,\dots 21/2$. Это несоответствие протонно-электронной теории названо «азотной катастрофой». Так же непонятным было то, что при наличии электронов в ядре его магнитный момент имеет малый магнитный момент по сравнению с магнитным моментом электрона.

В $1932$ году Дж. Чедвик открыл нейтрон. После этого открытия Д. Д. Иваненко и Е. Г. Гапон выдвинули гипотезу о протонно-нейтронном строении атомного ядра, какую подробно разработал В. Гейзенберг.

Замечание 1

Протонно-нейтронный состав ядра подтвержден не только теоретическими выводами, но и непосредственно опытами по расщеплению ядра на протоны и нейтроны. Сейчас общепринято, что атомное ядро состоит с протонов и нейтронов, которые так же называются нуклонами (от латинского nucleus -- ядро, зерно).

Строение атомного ядра

Ядро являет собой центральную часть атома, в которой сосредоточено положительный электрический заряд и основная часть массы атома. Размеры ядра, в сравнении с орбитами электронов чрезвычайно малы: $10^{-15}-10^{-14}\ м$. ядра состоят с протонов и нейтронов, которые почти одинаковы по массе, но электрический заряд несет только протон. Полное число протонов называется атомным номером $Z$ атома, который совпадает с числом электронов у нейтральном атоме. Нуклоны удерживаются в ядре большими силами, по своей природе эти силы не относятся ни к электрическим ни к гравитационным, а по величине они на много превышают силы, которые связывают электроны с ядром.

Согласно протонно-нейтронной модели строения ядра:

  • ядра всех химических элементов состоят из нуклонов;
  • заряд ядра обусловлен только протонами;
  • число протонов в ядре равно порядковому номеру элемента;
  • число нейтронов равно разности между массовым числом и числом протонов ($N=A-Z$)

Протон ($^2_1H\ или\ p$) -- положительно заряженная частица: её заряд равен заряду электрона $e=1.6\cdot 10^{-19}\ Кл$, а масса покоя $m_p=1.627\cdot 10^{-27}\ кг$. Протон является ядром налёгшего нуклона атома гидрогена.

Для упрощения записей и расчётов массу ядра зачастую определяют в атомных единицах массы (а.е.м) или в единицах энергии (записывая вместо массы соответствующую энергию $E=mc^2$ в электрон-вольтах). За атомною единицу массы берут $1/12$ массы нуклида углерода $^{12}_6С$. В этих единицах получаем:

Протон подобно электрону имеет собственный момент импульса -- спин, который равен $1/2$ (в единицах $\hbar $). Последний, во внешнем магнитном поле может ориентироваться только так, что его проекция и направления поля равны $+1/2$ или $-1/2$. Протон, как и электрон, подлежит квантовой статистике Ферми-Дирака, т.е. принадлежит к фермионам.

Протон характеризируется собственным магнитным моментом, который для частицы со спином $1/2$ зарядом $e$ и массой $m$ равен

Для электрона собственный магнитный момент равен

Для описания магнетизма нуклонов и ядер используют ядерный магнетон (в $1836$ раз меньше магнетона Бора):

Поначалу считали, что магнитный момент протона равен ядерному магнетону, т.к. его масса в $1836$ раз больше массы электрона. Но измерения показали, что на самом деле собственный магнитный момент протона в $2,79$ раз больше от ядерного магнетрона, имеет положительный знак, т.е. направление совпадает со спином.

Современная физика объясняет эти разногласия тем, что протоны и нейтроны взаимопреобразуются и на протяжении некоторого времени пребывают в состоянии диссоциации на $\pi ^\pm $ -- мезон и соответственного знака другой нуклон:

Масса покоя $\pi ^\pm $ - мезона равна $193,63$ МэВ, по этому его собственный магнитный момент в $6,6$ раз больше от ядерного магнетона. В измерениях появляется некоторое эффективное значение магнитного момента протона и $\pi ^+$ -- мезонного окружения.

Нейтрон ($n$) -- электрически нейтральная частица; ее масса покоя

Хоть нейтрон и лишен заряда, он имеет магнитный момент $\mu _n=-1.91\mu _Я$. Знак «$-$» показывает, что за направлением магнитный момент противоположный спину протона. Магнетизм нейтрона определяется эффективным значением магнитного момента частиц, на которые он способен диссоцыировать.

В свободном состоянии нейтрон неустойчивая частица и произвольно распадается (период полураспада $12$ мин): излучая $\beta $ -- частицу и антинейтрино он превращается в протон. Схема распада нейтрона записывается в таком виде:

В отличии от внутриядерного распада нейтрона $\beta $ -- распад принадлежит и до внутреннего распада и до физики элементарных частиц.

Взаимное преобразование нейтрона и протона, равенство спинов, приближённость масс и свойств дают основания предполагать, что речь идет о двух разновидностях одной и той же ядерной частицы -- нуклона. Протонно-нейтронная теория хорошо согласуется с экспериментальными данными.

Как составляющие ядра протоны и нейтроны обнаруживают в многочисленных реакциях деления и синтеза.

В произвольных и штучных делениях ядер наблюдаются так же потоки электронов, позитронов, мезонов, нейтрино и антинейтрино. Масса $\beta $ -- частицы (электрон или позитрон) в $1836$ раз меньше массы нуклона. Мезоны -- положительные, отрицательные и нулевые частицы -- по массе занимают промежуточное место между $\beta $ -- частицами и нуклонами; время жизни таких частиц очень мало и составляет миллионные доли секунды. Нейтрино и антинейтрино -- элементарные частицы, масса покоя которых равна нулю. Однако электроны, позитроны и мезоны не могут быть составляющими ядра. Эти легкие частицы не могут быть локализованы в малом объеме, которым является ядро радиусом $\sim 10^{-15}\ м$.

Для доказательства этого определим энергию электрического взаимодействия (например, электрона с позитроном или протоном в ядре)

и сравним ее с собственной энергией электрона

Посколькy энергия внешнего взаимодействия превышает собственную энергию электрона, он не может существовать и сохранять собственную индивидуальность, в условиях ядра он будет уничтожен. Другая ситуация с нуклонами, их собственная энергия более $900$ МэВ, поэтому в ядре они могут сохранять свои особенности.

Легкие частицы излучаются с ядер в процессе перехода их с одного состояния в другое.

Состав ядра атома

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) предложили протонно-нейтронную модель атомного ядра .
Согласно этой модели ядро состоит из протонов и нейтронов. Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A : A = Z + N . Ядра химических элементов обозначают символом:
X химический символ элемента.

Например, – водород,

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e – элементарный заряд. Число нейтронов обозначают символом N .

Ядерные силы

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов.

Ядерные силы обладают следующими свойствами:

  • обладают силами притяжения;
  • является силами короткодействующими (проявляются на малых расстояниях между нуклонами);
  • ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Дефект массы и энергия связи ядра атома

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Разность масс называется дефектом масс . По дефекту массы с помощью формулы Эйнштейна E = mc 2 можно определить энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра E св:

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

Ядерная энергетика

В нашей стране была построена первая в мире атомная электростанция и запущена в 1954 году в СССР, в городе Обнинске. Развивается строительство мощных атомных электростанций. В настоящее время в России 10 действующих АЭС . После аварии на Чернобыльской АЭС приняты дополнительные меры по безопасности атомных реакторов.