Показатель преломления через скорость. Определение показателя преломления (рефрактометрия)

Оптика является одним из старых разделов физики. Со времен античной Греции, многих философов интересовали законы движения и распространения света в разных прозрачных материалах, таких как вода, стекло, алмаз и воздух. В данной статье рассмотрено явление преломления света, акцентировано внимание на показателе преломления воздуха.

Эффект преломления светового луча

Каждый в своей жизни сталкивался сотни раз с проявлением этого эффекта, когда смотрел на дно водоема или на стакан с водой с помещенным в него каким-нибудь предметом. При этом водоем казался не таким глубоким, каким он являлся на самом деле, а предметы в стакане с водой выглядели деформированными или изломанными.

Явление преломления заключается в изломе его прямолинейной траектории, когда он пересекает поверхность раздела двух прозрачных материалов. Обобщая большое количество данных экспериментов, в начале XVII века голландец Виллеброрд Снелл получил математическое выражение, которое точно описывало это явление. Это выражение принято записывать в следующем виде:

n 1 *sin(θ 1) = n 2 *sin(θ 2) = const.

Здесь n 1 , n 2 - абсолютные показатели преломления света в соответствующем материале, θ 1 и θ 2 - углы между падающим и преломленным лучами и перпендикуляром к плоскости раздела сред, который проведен через точку пересечения луча и этой плоскости.

Эта формула носит название закона Снелла или Снелла-Декарта (именно француз записал ее в представленном виде, голландец же использовал не синусы, а единицы длины).

Помимо этой формулы, явление преломления описывается еще одним законом, который носит геометрический характер. Он заключается в том, что отмеченный перпендикуляр к плоскости и два луча (преломленный и падающий) лежат в одной плоскости.

Абсолютный показатель преломления

Эта величина входит в формулу Снелла, и ее значение играет важную роль. Математически показателю преломления n соответствует формула:

Символ c - это скорость электромагнитных волн в вакууме. Она составляет приблизительно 3*10 8 м/с. Величина v - это скорость движения света в среде. Таким образом, показатель преломления отражает величину замедления света в среде по отношению к безвоздушному пространству.

Из формулы выше следует два важных вывода:

  • величина n всегда больше 1 (для вакуума она равна единице);
  • это безразмерная величина.

Например, показатель преломления воздуха равен 1,00029, а для воды он составляет 1,33.

Показатель преломления не является величиной постоянной для конкретной среды. Он зависит от температуры. Более того, для каждой частоты электромагнитной волны он имеет свое значение. Так, приведенные выше цифры соответствуют температуре 20 o C и желтой части видимого спектра (длина волны - около 580-590 нм).

Зависимость величины n от частоты света проявляется в разложении белого света призмой на ряд цветов, а также в образовании радуги на небе во время проливного дождя.

Показатель преломления света в воздухе

Выше уже было приведено его значение (1,00029). Поскольку показатель преломления воздуха отличается лишь в четвертом знаке после запятой от нуля, то для решения практических задач его можно считать равным единице. Небольшое отличие n для воздуха от единицы говорит о том, что свет практически не замедляется молекулами воздуха, что связано с его относительно невысокой плотностью. Так, среднее значение плотности воздуха 1,225 кг/м 3 , то есть он в более чем 800 раз легче пресной воды.

Воздух - это оптически неплотная среда. Сам процесс замедления скорости света в материале носит квантовый характер и связан с актами поглощения и испускания фотонов атомами вещества.

Изменение состава воздуха (например, повышение содержания в нем водяного пара) и изменение температуры приводят к существенным изменениям показателя преломления. Ярким примером является эффект миража в пустыне, который возникает из-за различия показателей преломления воздушных слоев с разными температурами.

Граница раздела стекло - воздух

Стекло является гораздо более плотной средой, чем воздух. Его абсолютный показатель преломления лежит в пределах от 1,5 до 1,66 в зависимости от сорта стекла. Если взять среднее значение 1,55, тогда преломление луча на границе воздух - стекло можно рассчитать по формуле:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1,55.

Величина n 21 называется относительным показателем преломления воздух - стекло. Если же луч выходит из стекла в воздух, тогда следует пользоваться следующей формулой:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1/1,55 = 0,645.

Если луча в последнем случае будет равен 90 o , тогда ему соответствующий, называется критическим. Для границы стекло - воздух он равен:

θ 1 = arcsin(0,645) = 40,17 o .

Если луч будет падать на границу стекло - воздух с большими углами, чем 40,17 o , то он отразится полностью назад в стекло. Это явление так и называется "полное внутреннее отражение".

Критический угол существует только при движении луча из плотной среды (из стекла в воздух, но не наоборот).

Физический смысл показателя преломления. Свет преломляется вследствие изменения скорости его распространения при переходе из одной среды в другую. Показатель преломления второй среды относительно первой численно равен отношению скорости света в первой среде к скорости света во второй среде:

Таким образом, показатель преломления показывает, во сколько раз скорость света в той среде, из которой луч выходит, больше (меньше) скорости света в той среде, в которую он входит.

Поскольку скорость распространения электромагнитных волн в вакууме постоянна, целесообразно определить показатели преломления различных сред относительно вакуума. Отношение скорости с распространения света в вакууме к скорости распространения его в данной среде называется абсолютным показателем преломления данного вещества () и является основной характеристикой его оптических свойств,

,

т.е. показатель преломления второй среды относительно первой равен отношению абсолютных показателей этих сред.

Обычно оптические свойства вещества характеризуются показателем преломления n относительно воздуха, который мало отличается от абсолютного показателя преломления. При этом среда, у которой абсолютный показатель больше, называется оптически более плотной.

Предельный угол преломления. Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления (n 1 < n 2 ), то угол преломления меньше угла падения

r < i (рис.3).

Рис. 3. Преломление света при переходе

из оптически менее плотной среды в среду

оптически более плотную.

При увеличении угла падения до i m = 90° (луч 3, рис.2) свет во второй среде будет распространяться только в пределах угла r пр , называемого предельным углом преломления . В область второй среды в пределах угла, дополнительного к предельному углу преломления (90° - i пр ), свет не проникает (на рис.3 эта область заштрихована).

Предельный угол преломления r пр

Но sin i m = 1, следовательно .

Явление полного внутреннего отражения. Когда свет переходит из среды с большим показателем преломления n 1 > n 2 (рис.4), то угол преломления больше угла падения. Свет преломляется (переходит в вторую среду) только в пределах угла падения i пр , который соответствует углу преломления r m = 90°.

Рис. 4. Преломление света при переходе из оптически более плотной среды в среду

оптически менее плотную.

Свет, падающий под большим углом, полностью отражается от границы сред (рис. 4 луч 3). Это явление называется полным внутренним отражением, а угол падения i пр – предельным углом полного внутреннего отражения.

Предельный угол полного внутреннего отражения i пр определяется согласно условию:

, то sin r m =1, следовательно, .

Если свет идет из какой-либо среды в вакуум или в воздух, то

Вследствие обратимости хода лучей для двух данных сред предельный угол преломления при переходе из первой среды во вторую равен предельному углу полного внутреннего отражения при переходе луча из второй среды в первую.

Предельный угол полного внутреннего отражения для стекла меньше 42°. Поэтому лучи, идущие в стекле и падающие на его поверхность под углом 45°, полностью отражаются. Это свойство стекла используется в поворотных (рис.5а) и оборотных (рис. 4б) призмах, часто применяемых в оптических приборах.


Рис. 5: а – поворотная призма; б – оборотная призма.

Волоконная оптика. Полное внутреннее отражение используется при устройстве гибких световодов . Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль этого волокна (рис.6).

Рис.6. Прохождение света внутри прозрачного волокна, окруженного веществом

с меньшим показателем преломления.

Для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в пучки – световоды . Раздел оптики, в котором рассматривают передачу света и изображения по светопроводам, называют волоконной оптикой. Этим же термином называют и сами волоконно-оптические детали и приборы. В медицине световоды используют для освещения холодным светом внутренних полостей и передачи изображения.

Практическая часть

Приборы для определения показателя преломления веществ называются рефрактометрами (рис.7).


Рис.7. Оптическая схема рефрактометра.

1– зеркало, 2 – измерительная головка, 3 – система призм для устранения дисперсии, 4 – объектив, 5 – поворотная призма (поворот луча на 90 0), 6 – шкала (в некоторых рефрактометрах

имеются две шкалы: шкала показателей преломления и шкала концентрации растворов),

7 – окуляр.

Основной частью рефрактометра является измерительная головка, состоящая из двух призм: осветительной, которая находится в откидной части головки, и измерительной.

На выходе осветительной призмы ее матовая поверхность создает рассеянный пучок света, который проходит через исследуемую жидкость (2-3 капли) между призмами. На поверхность измерительной призмы лучи падают под различными углами, в том числе и под углом в 90 0 . В измерительной призме лучи собираются в области предельного угла преломления, чем и объясняется образование границы света - тени на экране прибора.

Рис.8. Ход луча в измерительной головке:

1 – осветительная призма, 2 – исследуемая жидкость,

3 – измерительная призма, 4 – экран.

ОПРЕДЕЛЕНИЕ ПРОЦЕНТНОГО СОДЕРЖАНИЯ САХАРА В РАСТВОРЕ

Естественный и поляризованный свет. Видимый свет – это электромагнитные волны с частотой колебаний в интервале от 4∙10 14 до 7,5∙10 14 Гц. Электромагнитные волны являются поперечными : векторы Е и Н напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору скорости распространения волны.

В связи с тем, что и химическое, и биологическое действие света связано в основном с электрической составляющей электромагнитной волны, вектор Е напряженности этого поля называют световым вектором, а плоскость колебаний этого вектора – плоскостью колебаний световой волны .

В любом источнике света волны излучаются множеством атомов и молекул, световые векторы этих волн расположены в разнообразных плоскостях, а колебания происходят в различных фазах. Следовательно, плоскость колебаний светового вектора результирующей волны непрерывно изменяет свое положение в пространстве (рис.1). Такой свет называется естественным, или неполяризованным .

Рис. 1. Схематическое изображение луча и естественного света.

Если выбрать две взаимно перпендикулярные плоскости, проходящие через луч естественного света и спроецировать векторы Е на плоскости, то в среднем эти проекции будут одинаковыми. Таким образом, луч естественного света удобно изображать как прямую, на которой расположено одинаковое число тех и других проекций в виде черточек и точек:


При прохождении света через кристаллы можно получить свет, плоскость колебаний волны которого занимает постоянное положение в пространстве. Такой свет называется плоско- или линейно–поляризованным . Вследствие упорядоченного расположения атомов и молекул в пространственной решетке, кристалл пропускает только колебания светового вектора, происходящие в некоторой, характерной для данной решетки, плоскости.

Плоско-поляризованную световую волну удобно изображать следующим образом:

Поляризация света может быть также и частичной. В этом случае амплитуда колебаний светового вектора в какой-либо одной плоскости значительно превышает амплитуды колебаний в остальных плоскостях.

Частично поляризованный свет условно можно изобразить следующим образом: , и т.д. Соотношение числа черточек и точек при этом определяет степень поляризации света.

Во всех способах преобразования естественного света в поляризованный из естественного света полностью или частично отбираются составляющие с вполне определенной ориентацией плоскости поляризации.

Способы получения поляризованного света: а) отражение и преломление света на границе двух диэлектриков; б) пропускание света через оптически анизотропные одноосные кристаллы; в) пропускание света через среды, оптическая анизотропия которых искусственно создана действием электрического или магнитного поля, а также вследствие деформации. Эти способы основаны на явлении анизотропии .

Анизотропия – это зависимость ряда свойств (механических, тепловых, электрических, оптических) от направления. Тела, свойства которых одинаковы по всем направлениям, называются изотропными .

Поляризация наблюдается также при рассеянии света. Степень поляризации тем выше, чем меньше размеры частиц, на которых происходит рассеяние.

Устройства, предназначенные для получения поляризованного света, называются поляризаторами .

Поляризация света при отражении и преломлении на границе раздела двух диэлектриков. При отражении и преломлении естественного света на границе раздела двух изотропных диэлектриков проходит его линейная поляризация. При произвольном угле падения поляризация отраженного света является частичной. В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном -параллельные ей (рис. 2).

Рис. 2. Частичная поляризация естественного света при отражении и преломлении

Если угол падения удовлетворяет условию tg i Б = n 21 , то отраженный свет поляризуется полностью (закон Брюстера), а преломленный луч поляризуется не полностью, но максимально (рис.3). В этом случае отраженный и преломленный лучи взаимно перпендикулярны.

– относительный показатель преломления двух сред, i Б – угол Брюстера.

Рис. 3. Полная поляризация отраженного луча при отражении и преломлении

на границе раздела двух изотропных диэлектриков.

Двойное лучепреломление. Существует ряд кристаллов (кальцит, кварц, и т.п.), в которых луч света, преломляясь, расщепляется на два луча с разными свойствами. Кальцит (исландский шпат) представляет собой кристалл с гексагональной решеткой. Ось симметрии шестиугольной призмы, образующей его ячейку, называется оптической осью. Оптическая ось – это не линия, а направление в кристалле. Любая прямая, параллельная этому направлению, также является оптической осью.

Если вырезать из кристалла кальцита пластинку так, чтобы ее грани были перпендикулярны оптической оси, и направить луч света вдоль оптической оси, то никакие изменения в нем не произойдут. Если же направить луч под углом к оптической оси, то он разобьется на два луча (рис. 4), из которых один называется обыкновенным, второй – необыкновенным.

Рис. 4. Двойное лучепреломление при прохождении света через пластинку кальцита.

MN –оптическая ось.

Обыкновенный луч лежит в плоскости падения и имеет обычный для данного вещества показатель преломления. Необыкновенный луч лежит в плоскости, проходящей через падающий луч и оптическую ось кристалла, проведенную в точке падения луча. Эта плоскость называется главной плоскостью кристалла . Показатели преломления для обыкновенного и необыкновенного луча отличаются.

Как обыкновенные, так и необыкновенные лучи поляризованы. Плоскость колебаний обыкновенных лучей перпендикулярна главной плоскости. Колебания необыкновенных лучей происходят в главной плоскости кристалла.

Явление двойного лучепреломления обусловлено анизотропией кристаллов. Вдоль оптической оси скорость световой волны для обыкновенного и необыкновенного лучей одна и та же. В других направлениях скорость необыкновенной волны у кальцита больше, чем обыкновенной. Наибольшая разница между скоростями обеих волн возникает в направлении, перпендикулярном оптической оси.

Согласно принципу Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей границы кристалла, возникают (не одна, как в обычных средах!) одновременно две элементарные волны, которые и распространяются в кристалле.

Скорость распространения одной волны по всем направлениям одинакова, т.е. волна имеет сферическую форму и называется обыкновенной . Скорость распространения другой волны по направлению оптической оси кристалла одинакова со скоростью обыкновенной волны, а по направлению перпендикулярному к оптической оси, от неё отличается. Волна имеет эллипсоидную форму и называется необыкновенной (рис.5).

Рис. 5. Распространение обыкновенной (о) и необыкновенной (е) волны в кристалле

при двойном лучепреломлении.

Призма Николя. Для получения поляризованного света пользуются поляризационной призмой Николя. Из кальцита выкалывают призму определенной формы и размеров, затем ее распиливают по диагональной плоскости и склеивают канадским бальзамом. При падении светового луча на верхнюю грань вдоль оси призмы (рис. 6) необыкновенный луч падает на плоскость склейки под меньшим углом и проходит, почти не изменяя направления. Обыкновенный луч падает под углом большим, чем угол полного отражения для канадского бальзама, отражается от плоскости склейки и поглощается зачерненной гранью призмы. Призма Николя дает полностью поляризованный свет, плоскость колебаний которого лежит в главной плоскости призмы.


Рис. 6. Призма Николя. Схема прохождения обыкновенного

и необыкновенного лучей.

Дихроизм. Существуют кристаллы, которые по-разному поглощают обыкновенный и необыкновенный лучи. Так, если на кристалл турмалина направить пучок естественного света перпендикулярно направлению оптической оси, то при толщине пластинки всего лишь в несколько миллиметров обыкновенный луч полностью поглотится, а из кристалла выйдет только необыкновенный луч (рис.7).

Рис. 7. Прохождение света через кристалл турмалина.

Различный характер поглощения обыкновенного и необыкновенного лучей называется анизотропией поглощения, или дихроизмом. Таким образом, кристаллы турмалина также могут быть использованы в качестве поляризаторов.

Поляроиды. В настоящее время в качестве поляризаторов широко применяют поляроиды. Для изготовления поляроида между двумя пластинками стекла или оргстекла заклеивается прозрачная пленка, которая содержит кристаллы поляризующего свет дихроичного вещества (например, сернокислый иодхинон). В процессе изготовления пленки кристаллы ориентируются так, чтобы их оптические оси были параллельны. Вся эта система закрепляется в оправе.

Дешевизна поляроидов и возможность изготовления пластин с большой площадью обеспечили их широкое применение на практике.

Анализ поляризованного света. Для исследования характера и степени поляризации света применяют устройства, называемые анализаторами. В качестве анализаторов используются те же устройства, которые служат для получения линейно-поляризованного света – поляризаторы, но приспособленные для вращения вокруг продольной оси. Анализатор пропускает только колебания, совпадающие с его главной плоскостью. В противном случае через анализатор проходит только составляющая колебаний, совпадающая с этой плоскостью.

Если световая волна, входящая в анализатор, линейно поляризована, то для интенсивности волны, выходящей из анализатора, справедлив закон Малюса:

,

где I 0 – интенсивность входящего света, φ – угол между плоскостями входящего света и света, пропускаемого анализатором.

Прохождение света через систему поляризатор – анализатор показано схематически на рис. 8.

Рис. 8. Схема прохождения света через систему поляризатор-анализатор(П – поляризатор,

А – анализатор, Э – экран):

а) главные плоскости поляризатора и анализатора совпадают;

б) главные плоскости поляризатора и анализатора расположены под некоторым углом;

в) главные плоскости поляризатора и анализатора взаимно перпендикулярны.

Если главные плоскости поляризатора и анализатора совпадают, то свет полностью проходит через анализатор и освещает экран (рис. 7а). Если они расположены под некоторым углом, свет проходит через анализатор, но ослабляется (рис.7б) тем больше, чем ближе этот угол к 90 0 . Если эти плоскости взаимно перпендикулярны, то свет полностью гасится анализатором (рис.7в)

Вращение плоскости колебания поляризованного света. Поляриметрия. Некоторые кристаллы, а также растворы органических веществ обладают свойством вращать плоскость колебаний проходящего через них поляризованного света. Эти вещества называются оптически активными . К ним относятся сахара, кислоты, алкалоиды и др.

Для большинства оптически активных веществ обнаружено существование двух модификаций, осуществляющих вращение плоскости поляризации соответственно по и против часовой стрелки (для наблюдателя, смотрящего навстречу лучу). Первая модификация называется правовращающей, или положительной, вторая – левовращающей, или отрицательной.

Естественная оптическая активность вещества в некристаллическом состоянии обусловлена асимметрией молекул. В кристаллических веществах оптическая активность может быть также обусловлена особенностями расположения молекул в решетке.

В твердых телах угол φ поворота плоскости поляризации прямо пропорционален длине d пути светового луча в теле:

где α – вращательная способность (удельное вращение), зависящая от рода вещества, температуры и длины волны. Для лево- и правовращающих модификаций вращательные способности одинаковы по величине.

Для растворов угол поворота плоскости поляризации

,

где α – удельное вращение, с – концентрация оптически активного вещества в растворе. Величина α зависит от природы оптически активного вещества и растворителя, температуры и длины волны света. Удельное вращение – это увеличенный в 100 раз угол вращения для раствора толщиной 1 дм при концентрации вещества 1 грамм на 100 см 3 раствора при температуре 20 0 С и при длине волны света λ=589 нм. Весьма чувствительный метод определения концентрации с, основанный на этом соотношении, называется поляриметрией (сахариметрией).

Зависимость вращения плоскости поляризации от длины волны света называется вращательной дисперсией. В первом приближении имеет местозакон Био:

где А – коэффициент, зависящий от природы вещества и температуры.

В клинических условиях метод поляриметрии применяется для определения концентрации сахара в моче. Используемый при этом прибор называется сахариметром (рис.9).

Рис. 9. Оптическая схема сахариметра:

И – источник естественного света;

С – светофильтр (монохроматор), обеспечивающий согласование работы прибора

с законом Био;

Л – собирающая линза, дающая на выходе параллельный пучок света;

П – поляризатор;

К – трубка с исследуемым раствором;

А – анализатор, укрепленный на вращающемся диске Д с делениями.

При проведении исследования сначала анализатор устанавливают на максимальное затемнение поля зрения без исследуемого раствора. Затем помещают в прибор трубку с раствором и, вращая анализатор, снова добиваются затемнения поля зрения. Наименьший из двух углов, на который при этом необходимо повернуть анализатор, и является углом вращения для исследуемого вещества. По величине угла вычисляется концентрация сахара в растворе.

Для упрощения расчетов трубку с раствором делают такой длины, чтобы угол поворота анализатора (в градусах) численно равнялся концентрации с раствора (в граммах на 100 см 3). При этом длина трубки для глюкозы составляет 19 см.

Поляризационная микроскопия. Метод основан на анизотропии некоторых компонентов клеток и тканей, появляющейся при наблюдении их в поляризованном свете. Структуры, состоящие из молекул, расположенных параллельно, или дисков, расположенных в виде стопки, при введении в среду с показателем преломления, отличающимся от показателя преломления частиц структуры, обнаруживают способность к двойному лучепреломлению. Это означает, что структура будет пропускать поляризованный свет только в том случае, когда плоскость поляризации параллельна длинным осям частиц. Это остается в силе даже тогда, когда частицы не обладают собственным двойным лучепреломлением. Оптическая анизотропия наблюдается в мышечных, соединительнотканных (коллагеновых) и нервных волокнах.

Само название скелетных мышц «поперечнополосатые» связано с различием оптических свойств отдельных участков мышечного волокна. Оно состоит из чередующихся более темных и более светлых участков вещества ткани. Это придает волокну поперечную исчерченность. Исследование мышечного волокна в поляризованном свете обнаруживает, что более темные участки являются анизотропными и обладают свойствами двойного лучепреломления , тогда как более темные участки являются изотропными . Коллагеновые волокна анизотропны, оптическая ось их расположена вдоль оси волокна. Мицеллы в мякотной оболочке нейрофибрилл также анизотропны, но оптические оси их расположены в радиальных направлениях. Для гистологического исследования этих структур применяется поляризационный микроскоп.

Важнейшим компонентом поляризационного микроскопа служит поляризатор, который располагается между источником света и конденсатором. Кроме того, в микроскопе имеются вращающийся столик или держатель образца, анализатор, находящийся между объективом и окуляром, который можно установить так, чтобы его ось была перпендикулярна оси поляризатора, и компенсатор.

Когда поляризатор и анализатор скрещены, а объект отсутствует или является изотропным, поле выглядит равномерно темным. Если же присутствует объект, обладающий двойным лучепреломлением, и он расположен так, что его ось находится под углом к плоскости поляризации, отличным от 0 0 или от 90 0 , он будет разделять поляризованный свет на два компонента – параллельный и перпендикулярный относительно плоскости анализатора. Следовательно, часть света будет проходить через анализатор, в результате чего появится яркое изображение объекта на темном фоне. При вращении объекта яркость его изображения будет изменяться, достигая максимума при угле 45 0 относительно поляризатора или анализатора.

Поляризационная микроскопия используется при изучении ориентации молекул в биологических структурах (например, мышечных клетках), а также во время наблюдения структур, невидимых при применении других методов (например, митотического веретена при делении клеток), идентификации спиральной структуры.

Поляризованный свет используют в модельных условиях для оценки механических напряжений, возникающих в костных тканях. Этот метод основан на явлении фотоупругости, которое заключается в возникновении оптической анизотропии в первоначально изотропных твердых телах под действием механических нагрузок.

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Интерференция света. Интерференцией света называется явление, возникающее при наложении световых волн и сопровождаемое их усилением или ослаблением. Устойчивая интерференционная картина возникает при наложении когерентных волн. Когерентными волнами называются волны с равными частотами и одинаковыми фазами или имеющими постоянный сдвиг фаз. Усиление световых волн при интерференции (условие максимума) происходит в том случае, Δ укладывается четное число длин полуволн:

где k – порядок максимума, k=0,±1,±2,±,…±n;

λ – длина световой волны.

Ослабление световых волн при интерференции (условие минимума) наблюдается в том случае, если в оптической разности хода Δ укладывается нечетное число длин полуволн:

где k – порядок минимума.

Оптической разностью хода двух лучей называется разность расстояний от источников до точки наблюдения интерференционной картины.


Интерференция в тонких пленках. Интерференцию в тонких пленках можно наблюдать в мыльных пузырях, в пятне керосина на поверхности воды при освещении их солнечным светом.

Пусть на поверхность тонкой пленки падает луч 1 (см рис.2). Луч, преломившись на границе воздух - пленка, проходит через пленку, отражается от её внутренней поверхности, подходит к внешней поверхности пленки, преломляется на границе пленка – воздух и выходит луч . В точку выхода луча направляем луч 2, который проходит параллельно лучу 1. Луч 2 отражается от поверхности пленки , накладывается на луч , и оба луча интерферируют.

При освещении пленки полихроматическим светом получаем радужную картину. Это объясняется тем, что пленка неоднородна по толщине. Следовательно, возникают различные по величине разности хода, которым соответствуют разные длины волн (окрашенные мыльные пленки, переливчатые цвета крыльев некоторых насомых и птиц, пленки нефти или масел на поверхности воды и т.д.).

Интерференция света используется в приборах – интерферометрах. Интерферометрами называются оптические устройства, при помощи которых можно пространственно разделить два луча и создать между ними определенную разность хода. Применяются интерферометры для определения длины волн с высокой степенью точности небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

В санитарно–гигиенических целях интерферометр применяется для определения содержания вредных газов.

Сочетание интерферометра и микроскопа (интерференционный микроскоп) используется в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принцип Гюйгенса – Френеля. Согласно Гюйгенсу, каждая точка среды, до которой доходит первичная волна в данной момент, является источником вторичных волн. Френель уточнил это положение Гюйгенса, добавив, что вторичные волны являются когерентными, т.е. при наложении они будут давать устойчивую интерференционную картину.

Дифракция света. Дифракцией света называются явления отклонения света от прямолинейного распространения.

Дифракция в параллельных лучах от одной щели. Пусть на цель шириной в падает параллельный пучок монохроматического света (см. рис. 3):

На пути лучей установлена линза L , в фокальной плоскости которой находится экран Э . Большинство лучей не дифрагируют, т.е. не меняют своего направления, и они фокусируются линзой L в центре экрана, образуя центральный максимум или максимум нулевого порядка. Лучи, дифрагирующие под равными углами дифракции φ , будут на экране образовывать максимумы 1,2,3,…, n – порядков.

Таким образом, дифракционная картина, полученная от одной щели в параллельных лучах при освещении монохроматическим светом, представляет собой светлую полосу с максимальной освещенностью в центре экрана, затем идет темная полоса (минимум I – го порядка), потом идет светлая полоса (максимум 1 – го порядка), темная полоса (минимум 2 – го порядка), максимум 2 – го порядка и т.д. Дифракционная картина симметрична относительно центрального максимума. При освещении щели белым светом на экране образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света.

Условия max и min дифракции. Если в оптической разности хода Δ укладывается нечетное число отрезков, равных , то наблюдается усиление интенсивности света (max дифракции):

где k – порядок максимума; k =±1,±2,±…,±n;

λ – длина волны.

Если в оптической разности хода Δ укладывается четное число отрезков, равных , то наблюдается ослабление интенсивности света (min дифракции):

где k – порядок минимума.

Дифракционная решетка. Дифракционная решетка представляет собой чередующиеся непрозрачные для прохождения света полосы с прозрачными для света полосами (щелями) равной ширины.


Основной характеристикой дифракционной решетки является её период d . периодом дифракционной решетки называется суммарная ширина прозрачной и непрозрачной полосы:

Дифракционная решетка используется в оптических приборах для усиления разрешающей способности прибора. Разрешающая способность дифракционной решетки зависит от порядка спектра k и от числа штрихов N :

где R – разрешающая способность.

Вывод формулы дифракционной решетки. Направим на дифракционную решетку два параллельных луча: 1 и 2 так, чтобы расстояние между ними было равно периоду решетки d .


В точках А и В лучи 1 и 2 дифрагируют, отклоняясь от прямолинейного направления на угол φ – угол дифракции.

Лучи и фокусируются линзой L на экран, расположенный в фокальной плоскости линзы (рис. 5). Каждую щель решетки можно рассматривать как источник вторичных волн (принцип Гюйгенса – Френеля). На экране в точке Д наблюдаем максимум интерференционной картины.

Из точки А на ход луча опускаем перпендикуляр и получаем точку С. рассмотрим треугольник АВС : треугольник прямоугольный, ÐВАС=Ðφ как углы с взаимно перпендикулярными сторонам. Из Δ АВС:

где АВ=d (по построению),

СВ = Δ – оптическая разность хода.

Так как в точке Д наблюдаем max интерференции, то

где k – порядок максимума,

λ – длина световой волны.

Подставляем значения АВ=d, в формулу для sinφ :

Отсюда получаем:

В общем виде формула дифракционной решетки имеет вид:

Знаки ± показывают, что интерференционная картина на экране симметрична относительно центрального максимума.

Физические основы голографии. Голографией называется метод записи и восстановления волнового поля, который основан на явлениях дифракции и интерференции волн. Если на обычной фотографии фиксируется только интенсивность отраженных от предмета волн, то на голограмме дополнительно фиксируются и фазы волн, что дает дополнительную информацию о предмете и позволяет получить объемное изображение предмета.

Если волна света падает на плоскую границу, разделяющую два диэлектрика, имеющих разные величины относительных диэлектрических проницаемостей, то эта волна отражается от границы раздела и преломляется, проходя из одного диэлектрика в другой. Преломляющую силу прозрачной среды характеризуют при помощи коэффициента преломления, который чаще называют показателем преломления.

Абсолютный показатель преломления

ОПРЕДЕЛЕНИЕ

Абсолютным показателем преломления называют физическую величину, равную отношению скорости распространения света в вакууме () к фазовой скорости света в среде (). Обозначают данный показатель преломления буквой . Математически данное определение показателя преломления запишем как:

Для любого вещества (исключение составляет вакуум), величина коэффициента преломления зависит от частоты света и параметров вещества (температуры, плотности и т.д). Для разреженных газов показатель преломления принимают равным .

Если вещество является анизотропным, то n зависит от направления, по которому свет распространяется и каким образом поляризована световая волна.

Исходя из определения (1) абсолютный коэффициент преломления можно найти как:

где — диэлектрическая проницаемость среды, — магнитная проницаемость среды.

Показатель преломления может быть комплексной величиной в поглощающих средах. В диапазоне оптических волн при =1, диэлектрическую проницаемость записывают как:

тогда показатель преломления:

где действительная часть коэффициента преломления, равная:

отражает преломление, мнимая часть:

отвечает за поглощение.

Относительный показатель преломления

ОПРЕДЕЛЕНИЕ

Относительным показателем преломления () второй среды относительно первой называют отношение фазовых скоростей света в первом веществе к фазовой скорости во втором веществе:

где — абсолютный показатель преломления второй среды, — абсолютный показатель преломления первого вещества. В том случае, если title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;">, то вторая среда считается оптически более плотной, чем первая.

Для монохроматических волн, длины которых много больше, чем расстояние между молекулами в веществе выполняется закон Снеллиуса:

где — угол падения, — угол преломления, — относительный показатель преломления вещества в котором происходит распространение преломленного света, относительно среды в которой распространялась падающая волна света.

Единицы измерения

Показатель преломления величина безразмерная.

Примеры решения задач

ПРИМЕР 1

Задание Каким будет предельный угол полного внутреннего отражения () если луч света переходит из стекла в воздух. Показатель преломления стекла считать равным n=1,52.
Решение При полном внутреннем отражении угол преломления () больше или равен ). Для угла закон преломления трансформируется к виду:

так как угол падения луча равен углу отражения, то можно записать, что:

По условиям задачи луч переходит из стекал в воздух, это значит, что

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Какова связь угла падения луча света () с показателем преломления вещества (n)? Если угол между отраженным и преломленным лучами равен ? Луч падает из воздуха в вещество.
Решение Сделаем рисунок.

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

Преломления называют некое отвлеченное число, которое характеризует преломляющую способность какой-либо прозрачной среды. Обозначать ее принято n. Различают абсолютный показатель преломления и коэффициент относительный.

Первый рассчитывается по одной из двух формул:

n = sin α / sin β = const (где sin α - синус угла падения, а sin β - синус луча света, входящего в рассматриваемую среду из пустоты)

n = c / υ λ (где с - скорость света в пустоте, υ λ - скорость света в исследуемой среде).

Здесь расчет показывает, во сколько раз свет изменяет скорость своего распространения в момент перехода из вакуума в прозрачную среду. Таким образом определяется показатель преломления (абсолютный). Для того чтобы узнать относительный, используют формулу:

То есть при этом рассматриваются абсолютные показатели преломления веществ разной плотности, например воздуха и стекла.

Если говорить в общем, то абсолютные коэффициенты любых тел, будь то газообразных, жидких или твердых, всегда больше 1. В основном их значения колеблются от 1 до 2. Выше 2 эта величина может быть только в исключительных случаях. Значение данного параметра для некоторых сред:


Эта величина в применении к самому твердому природному веществу на планете, алмазу, составляет 2,42. Очень часто при проведении научных изысканий и т. д. требуется знать показатель преломления воды. Этот параметр составляет 1,334.

Поскольку длина волны - показатель, разумеется, непостоянный, к букве n приписывается индекс. Его значение и помогает понять, к какой волне спектра данный коэффициент относится. При рассмотрении одного и того же вещества, но с увеличением длины световой волны, показатель преломления будет уменьшаться. Этим обстоятельством и вызвано разложение света на спектр при прохождении через линзу, призму и т. д.

По величине коэффициента преломления можно определить, к примеру, сколько одного вещества растворено в другом. Это бывает полезным, допустим, в пивоварении или когда необходимо узнать концентрацию сахара, фруктов или ягод в соке. Данный показатель важен и при определении качества нефтепродуктов, и в ювелирном деле, когда нужно доказать подлинность камня и т. д.

Без использования какого-либо вещества шкала, видимая в окуляре прибора, будет полностью окрашена в голубой цвет. Если капнуть на призму обычной дистиллированной воды, при правильной калибровке инструмента граница синего и белого цветов будет проходить строго по нулевой отметке. При исследовании другого вещества она сместится по шкале согласно тому, какой показатель преломления ему свойственен.