Все функции с графиками. Исследование графика функции

Национальный научно-исследовательский университет

Кафедра прикладной геологии

Реферат по высшей математике

На тему: «Основные элементарные функции,

их свойства и графики»

Выполнил:

Проверил:

преподаватель

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции:

1. Область определения - множество (R) всех действительных чисел.

2. Область значений - множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

4. Является функцией общего вида.

, на интервале xÎ [-3;3] , на интервале xÎ [-3;3]

Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)= и возрастает на промежутке

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

, на интервале xÎ [-3;3]

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

, на интервале xÎ [-3;3]

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)= , на интервале xÎ , на интервале xÎ [-3;3]

Логарифмическая функция у = log a x обладает следующими свойствами:

1. Область определения D(x)Î (0; + ∞).

2. Область значений E(y) Î (- ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.

; на интервале xÎ ; на интервале xÎ

Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

Функция y = sin (х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая; основной период равен 2π.

4. Функция нечетная.

5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

График функции у = sin (х) изображен на рисунке 11.


Знание основных элементарных функций, их свойств и графиков не менее важно, чем знание таблицы умножения. Они как фундамент, на них все основано, из них все строится и к ним все сводится.

В этой статье мы перечислим все основные элементарные функции, приведем их графики и дадим без вывода и доказательств свойства основных элементарных функций по схеме:

  • поведение функции на границах области определения, вертикальные асимптоты (при необходимости смотрите статью классификация точек разрыва функции);
  • четность и нечетность;
  • промежутки выпуклости (выпуклости вверх) и вогнутости (выпуклости вниз), точки перегиба (при необходимости смотрите статью выпуклость функции, направление выпуклости, точки перегиба, условия выпуклости и перегиба);
  • наклонные и горизонтальные асимптоты;
  • особые точки функций;
  • особые свойства некоторых функций (например, наименьший положительный период у тригонометрических функций).

Если Вас интересует или , то можете перейти к этим разделам теории.

Основными элементарными функциями являются: постоянная функция (константа), корень n -ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Навигация по странице.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , где C – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С . Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C) . Для примера покажем графики постоянных функций y=5 , y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С .
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n -ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n -ой степени, n - четное число.

Начнем с функции корень n -ой степени при четных значениях показателя корня n .

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.


Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n -ой степени при четных n .

Корень n -ой степени, n - нечетное число.

Функция корень n -ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.


При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n -ой степени при нечетных n .

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a . В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a , далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a .

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a . Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,… .

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x .

Свойства степенной функции с нечетным положительным показателем.

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,… .

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола .

Свойства степенной функции с четным положительным показателем.

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,… .

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1 имеем обратную пропорциональность , графиком которой является гипербола .

Свойства степенной функции с нечетным отрицательным показателем.

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,… .

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

>

При других значениях показателя степени a , графики функции будут иметь схожий вид.

Свойства степенной функции при .

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Свойства степенной функции с показателем a , .

Степенная функция с нецелым действительным показателем, который меньше минус единицы.

Приведем примеры графиков степенных функций при , они изображены черной, красной, синей и зеленой линиями соответственно.

Свойства степенной функции с нецелым отрицательным показателем, меньшим минус единицы.

При а=0 и имеем функцию - это прямая из которой исключена точка (0;1) (выражению 0 0 условились не придавать никакого значения).

Показательная функция.

Одной из основных элементарных функций является показательная функция.

График показательной функции , где и принимает различный вид в зависимости от значения основания а . Разберемся в этим.

Сначала рассмотрим случай, когда основание показательной функции принимает значение от нуля до единицы, то есть, .

Для примера приведем графики показательной функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. Аналогичный вид имеют графики показательной функции при других значениях основания из интервала .

Свойства показательной функции с основанием меньшим единицы.

Переходим к случаю, когда основание показательной функции больше единицы, то есть, .

В качестве иллюстрации приведем графики показательных функций – синяя линия и – красная линия. При других значениях основания, больших единицы, графики показательной функции будут иметь схожий вид.

Свойства показательной функции с основанием большим единицы.

Логарифмическая функция.

Следующей основной элементарной функцией является логарифмическая функция , где , . Логарифмическая функция определена лишь для положительных значений аргумента, то есть, при .

График логарифмической функции принимает различный вид в зависимости от значения основания а .

Начнем со случая, когда .

Для примера приведем графики логарифмической функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. При других значениях основания, не превосходящих единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием меньшим единицы.

Перейдем к случаю, когда основание логарифмической функции больше единицы ().

Покажем графики логарифмических функций – синяя линия, – красная линия. При других значениях основания, больших единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием большим единицы.

Тригонометрические функции, их свойства и графики.

Все тригонометрические функции (синус, косинус, тангенс и котангенс) относятся к основным элементарным функциям. Сейчас мы рассмотрим их графики и перечислим свойства.

Тригонометрическим функциям присуще понятие периодичности (повторяемости значений функции при различных значениях аргумента, отличных друг от друга на величину периода , где Т - период), поэтому, в список свойств тригонометрических функций добавлен пункт «наименьший положительный период» . Также для каждой тригонометрической функции мы укажем значения аргумента, при которых соответствующая функция обращается в ноль.

Теперь разберемся со всеми тригонометрическими функциями по порядку.

Функция синус y = sin(x) .

Изобразим график функции синус, его называют "синусоида".


Свойства функции синус y = sinx .

Функция косинус y = cos(x) .

График функции косинус (его называют "косинусоида") имеет вид:


Свойства функции косинус y = cosx .

Функция тангенс y = tg(x) .

График функции тангенс (его называют "тангенсоида") имеет вид:

Свойства функции тангенс y = tgx .

Функция котангенс y = ctg(x) .

Изобразим график функции котангенс (его называют "котангенсоида"):

Свойства функции котангенс y = ctgx .

Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки "арк" обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x) .

Изобразим график функции арксинус:

Свойства функции арккотангенс y = arcctg(x) .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват учреждений.
  • Выгодский М.Я. Справочник по элементарной математике.
  • Новоселов С.И. Алгебра и элементарные функции.
  • Туманов С.И. Элементарная алгебра. Пособие для самообразования.

С задачей построения графика функции школьники сталкиваются в самом начале изучения алгебры и продолжают строить их из года в год. Начиная с графика линейной функции, для построения которой нужно знать всего две точки, к параболе, для которой нужно уже 6 точек, гиперболе и синусоиде. С каждым годом функции становятся все сложнее и построения их графиков уже невозможно выполнить по шаблону, необходимо проводить более сложные исследования, пользуясь производными и пределами.

Давайте разберемся, как найти график функции? Для этого начнем с самых простых функций, графики которых строятся по точкам, а потом рассмотрим план для построения более сложных функций.

Построение графика линейной функции

Для построения простейших графиков используют таблицу значений функции. Графиком линейной функции является прямая. Давайте попробуем найти точки графика функции y=4x+5.

  1. Для это возьмем два произвольных значения переменной x, подставим их поочередно в функцию, найдем значение переменной y и занесем все в таблицу.
  2. Возьмем значение x=0 и подставим в функцию вместо x - 0. Получим: y=4*0+5, то есть y=5 запишем это значение в таблицу под 0. Аналогично возьмем x=0 получим y=4*1+5, y=9.
  3. Теперь, чтобы построить график функции нужно нанести на координатную плоскость эти точки. Затем необходимо провести прямую.

Построение графика квадратичной функции

Квадратичная функция - это функция вида y=ax 2 +bx +c, где x-переменная, a,b,c - числа (a не равно 0). Например: y=x 2 , y=x 2 +5, y=(x-3) 2 , y=2x 2 +3x+5.

Для построения простейшей квадратичной функции y=x 2 обычно берут 5-7 точек. Возьмем значения для переменной x: -2, -1, 0, 1, 2 и найдем значения y также как и при построении первого графика.

График квадратичной функции называют параболой. После построения графиков функции у учеников появляются новые задачи, связанные с графиком.

Пример 1: найдите абсциссу точки графика функции y=x 2 , если ордината равна 9. Для решения задачи необходимо в функцию вместо y подставить ее значение 9. Получим 9=x 2 и решить это уравнение. x=3 и x=-3. Это можно увидеть и на графике функции.

Исследование функции и построение ее графика

Для построения графиков более сложных функций необходимо выполнить несколько шагов, направленных на ее исследование. Для этого необходимо:

  1. Найти область определения функции. Область определения - это все значения которые может принимать переменная x. Из области определения следует исключить те точки, в которых знаменатель обращается в 0 или подкоренное выражение становится отрицательным.
  2. Установить четность или нечетность функции. Напомним, что четной является та функция, которая отвечает условию f(-x)=f(x). Ее график является симметричным относительно Оу. Функция будет нечетной, если она отвечает условию f(-x)=-f(x). В этом случае график симметричен относительно начала координат.
  3. Найти точки пересечения с осями координат. Для того, чтобы найти абсциссу точки пересечения с осью Ох, необходимо решить уравнение f(x)=0 (ордината при этом равна 0). Чтобы найти ординату точки пересечения с осью Оу, необходимо в функцию вместо переменной x подставить 0 (абсцисса равна 0).
  4. Найти асимптоты функции. Асиптота - прямая, к которой график бесконечно приближается, но никогда ее не пересечет. Давайте разберемся, как найти асимптоты графика функции.
    • Вертикальная асимптота прямая вида х=а
    • Горизонтальная асимптота - прямая вида у=а
    • Наклонная асимптота - прямая вида y=kx+b
  5. Найти точки экстремума функции, промежутки возрастания и убывания функции. Найдем точки экстремума функции. Для этого необходимо найти первую производную и приравнять ее к 0. Именно в этих точках функция может поменяться с возрастающей на убывающую. Определим знак производной на каждом интервале. Если производная положительна, то график функции возрастает, если отрицательна - убывает.
  6. Найти точки перегиба графика функции, промежутки выпуклости вверх и вниз.

Найти точки перегиба теперь проще простого. Нужно лишь найти вторую производную, затем приравнять ее к нулю. Следом находим знак второй производной на каждом интервале. Если положительный, то график функции выпуклый вниз, если отрицательна - вверх.

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.