Химический состав земной группы. Особенности планет земной группы

Главные характерные особенности планет Солнечной системы определяются их расстоянием от Солнца, периодом обращения вокруг Солнца, диаметром, массой и объемом.

Меркурий - ближайшая к Солнцу и самая малая планета Солнечной системы. По величине радиуса он уступает спутникам Юпитера - Каллисто и Ганимеду, спутнику Сатурна - Титану и спутнику Нептуна -Тритону. Меркурий вращается вокруг своей оси с периодом, в 1,5 раза меньшим периода его обращения по орбите. На освещенном полушарии Меркурия температура достигает 700°К, а на неосвещенной, ночной стороне может опускаться до 220°К. Телевизионная съемка, проведенная «Маринером-10», показала, что поверхность Меркурия во многом сходна с поверхностью Луны. По данным оптических и фотоклинометрических измерений Меркурий испещрен кратерами ничуть не в меньшей степени, чем Луна, если не в большей. Точные размеры Меркурия 56 еще не установлены. Радарные диаметр и масса дают среднюю плотность Меркурия 5,46 г/см 3 , фотоэлектрический метод Герцшпрунга -на 1% больше радарного значения. Полученные данные свидетельствуют о значительной роли металлической фазы в его недрах.

Многочисленные исследования отражательной способности поверхности Меркурия свидетельствуют о большой вероятности содержания в его грунте значительных количеств FeO. Это заключение противоречит принятым гипотезам об условиях конденсации Меркурия. Однако, если эти данные подтвердятся, то придется считать вынос FeO на поверхность в составе пироксена за счет базальтового вулканизма. Грунт Меркурия близок к таковому на лунных возвышенностях (- 5,5% FeO), в которых, как известно, содержится ортопироксен. Самая большая депрессия, обнаруженная на Меркурии, имеет диаметр 1300 км. Она заполнена веществом, аналогичным веществу лунных морей. Образований, аналогичных структурам земной тектоники, плит или крупномасштабных разломов не заметно. Предполагается, что процессы дифференциации планеты, а она имеет железное ядро, закончились еще на стадии ее аккреции.

Венера по своим размерам и средней плотности наиболее близка к Земле. Масса планеты, вычисленная после полета межпланетной станции «Маринер-2», составляет 0,81485 земной массы. Радиолокационные измерения позволили прийти к заключению, что Венера в отличие от других планет вращается в сторону, противоположную направлению ее движения вокруг Солнца. По данным радиолокационных измерений твердая часть Венеры представляет собой неровную поверхность. Сведения о микрорельефе получены со спускаемых аппаратов «Венера-8» и «Венера-14». В целом поверхность Венеры гораздо более ровная, чем у других планет земной группы. Наблюдаются отдельные возвышенности и отдельные пики гор. Примечателен один из районов (вблизи экватора) диаметром около 700 км с депрессией в средней части 60X90 км, возвышающийся над соседними районами на 10 км. Интерпретируется это поднятие как большая вулканическая конструкция, аналогичная земным и марсианским континентальным вулканам. На Венере есть и каналоподобная депрессия длиной 1400 км, шириной 150 км и глубиной 2 км, которую можно сравнить с аналогичными и весьма распространенными «каналами» на Марсе и частично с Африкано-Аравийской рифтовой системой в Восточной Африке. Эта депрессия или трог в 850 км к востоку проникает в плато континентального размера, где встречается со слабо выраженной, очень узкой, волнообразной депрессией. «Венерой-10» была оценена плотность венерианской породы в 2,8± ±0,1 г/см 3 , типичная для Луны или Земли. Фотографии Венеры, полученные «Венерой-9» и «Венерой-10», показали, что поверхность в местах посадок характеризуется плитовидными и округлыми матово-серыми массивными гальками. Гальки тонкозернистые с темной матрицей реголита или грунта.

Для Венеры характерно: 1) уникальная топография с рельефом, контрастным по более высокой пространственной частоте, но более низкой магнитуде, чем у других земных планет (нельзя сказать, что магнитуда рельефа не похожа на земную, так же как неровности поверхности сравнимы с теми, которыми характеризуются лунные моря), 2) ландшафтное разнообразие - кратеро-подобные формы, встречаемые группами, отделенными от районов горных плато большим экваториальным разломом (изолированные горы, по-видимому, встречаются повсеместно в районах, обследованных земными локаторами), 3) наличие трех типов вулканов: одни образуют большие единичные структуры, сравнимые с вулканом Тарсиса на Марсе, другие - меньшие пики, которые встречаются поодиночке или группами, третьи - равнины, подобные таковым на Марсе и Луне, 4) наличие горной местности и грубо определенных линеаментов, свидетельствующих, очевидно, о проявлении компрессионной тектоники, 5) наличие большого трога на экваторе, говорящего о растягивающей тектонической активности, 6) радиоактивность, которая указывает, что ее породы сходны с земными. «Венера-9» и «Венера-10», по-видимому, встретились с базальтовыми породами, а «Венера-8» - с породами гранитного состава (первые подтверждают предположение о развитии вулканизма, в то время как последние дают основание считать наличие более сложной тектоно-вулканической истории), 7) наличие двух участков, которые подвергались геометрическим изменениям (отличия между ними могут быть объяснены особенностями протекавших в них процессов, которые различались либо по времени, либо по скорости протекания или комбинаций обоих; однако во всех случаях эти процессы были достаточно активными, чтобы отделить большие обломки от маленьких, окатать одни гальки и не затронуть другие и перемешать весь этот экзотический материал; такими процессами могли быть как баллистические импактные, так и эоловые процессы; Венера окружена мощной газовой оболочкой).

Земля является наиболее крупной из всех внутренних планет, имеет наиболее крупный спутник - Луну. По составу азотно-кислородная атмосфера Земли резко отличается от атмосферы других планет. О Земле мы знаем баснословно много по сравнению с другими планетами.

Луна - естественный спутник Земли, составляющий 1/81 часть ее массы и двигающийся по орбите со средней скоростью 1,02 км/с, или 3680 км/ч. Поверхность Луны состоит из светлых участков, образованных горными системами и возвышенностями, и темных участков - так называемых «морей». Наиболее крупные «моря» имеют произвольные названия: Море Дождей, Море Ясности, Море Изобилия, Море Нектара, Океан Бурь и др. Вся поверхность (3,8-10 7 км 2) Луны покрыта множеством воронок различного размера, наиболее крупные из которых получили название лунных цирков. По плотности Луна представляет собой почти однородное тело. Она слегка асимметрична. Ее центр тяжести примерно на 2 км ближе к Земле, чем ее геометрический центр. На

Луне встречаются нагорья, неправильные и кольцевые морские бассейны, линеаменты и борозды, кратеры диаметром от тысяч километров до миллиметров. Луна обладает очень слабой сейсмичностью. Очевидно, слабые толчки, зафиксированные сейсмографами на поверхности Луны, вызваны скорее падающими метеоритами, чем тектонической активностью. Тем не менее на основании сейсмических данных выделяются четыре или пять зон. Первая сейсмическая граница проходит на глубине 50-60 км, вторая - 250 км, третья -500 км, четвертая - 1400-1500 км. Соответствующие зоны приписываются коре, верхней, средней и нижней мантии, а в центре Луны, возможно, располагается ядро диаметром 170- 350 км. Эти подразделения довольно условны, поскольку отмечаемые различия в скоростях прохождения сейсмических волн находятся на грани разрешающей способности сейсмографов, установленных на Луне.

Марс из всех внутренних планет наиболее удален от Солнца, масса его составляет 0,108 часть массы Земли, сжатие 1/190,9, т. е. оно больше, чем у Земли. Это свидетельствует о том, что его масса меньше сконцентрирована около центра, чем на Земле. Вокруг Солнца Марс обращается с периодом 1 год 322 собственных суток, ось вращения имеет наклон 67° к плоскости орбиты. Это вызывает смену времени года на различных широтах аналогично тому, что происходит на Земле. Марс имеет два спутника - Деймос и Фобос - с периодами вращения соответственно 30,30 и 7,65 часа; спутники движутся почти точно в плоскости экватора планеты: Фобос на расстоянии 9400 км, а Деймос -23 500 км. По данным «Маринера-9» спутники имеют неправильную форму, размеры Фобоса 25X21 км, а Деймоса 13,5X12 км; оба имеют низкое альбедо (0,05), которое по своему значению близко к альбедо углистых хондритов и базальтов. Фобос и Деймос покрыты многочисленными кратерами ударного происхождения.

Планеты, относящиеся к земной группе, -- Меркурий, Венера, Земля, Марс -- имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз превосходит плотность воды; они медленно вращаются вокруг своих осей; у них мало спутников (у Меркурия и Венеры их вообще нет, у Марса -- два крохотных, у Земли -- один).

Черты сходства и различия обнаруживаются также при изучении атмосфер планет земной группы Хорошавина С.Г. Концепции современного естествознания. Курс лекций -- Ростов-на-Дону, 2006.

Меркурий

Меркурий -- четвертая по блеску планета: в максимуме блеска она почти так же ярка, как Сириус, ярче нее бывают только Венера, Марс и Юпитер. Тем не менее, Меркурий - очень трудный объект для наблюдений из-за малости его орбиты и, следовательно, близости к Солнцу. Для невооруженного глаза Меркурий - светлая точка, а в сильный телескоп у него вид серпика или неполного круга. Изменения вида (фаз) планеты с течением времени показывают, что Меркурий - это шар, с одной стороны освещенный Солнцем, а с другой - совершенно темный. Диаметр этого шара - 4870 км.

Меркурий медленно вращается вокруг своей оси, будучи всегда обращенным, к Солнцу одной стороной. Таки образом период обращения вокруг Солнца (меркурианский год) составляет около 88 земных суток, а период вращения вокруг своей оси -- 58 суток. Получается, что от восхода Солнца до его захода на Меркурии проходит год, то есть 88 земных суток. И правда, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Меркурий обладает относительно большой плотностью среди планет Солнечной системы -- около 5,44 г/см3. Ученые предполагают, что это обусловлено наличием массивного металлического ядра (предположительно из расплавленного железа плотностью до 10 г/см3, имеющего температуру около 2000 К), содержащего более 60% массы планеты и окруженного силикатной мантией и, вероятно, корой 60 -- 100 км толщиной.

Венера

Венера наблюдается и как «вечерняя звезда» и как «утренняя звезда» - Hesperus и Phosphorus, так называли ее в античном мире. После солнца и Луны Венера - самое яркое небесное светило, а ночью освещенные ею предметы могут отбрасывать тени. Так же Венера -- ближайшая к Земле планета. Ее даже называют "сестрой Земли". И вправду -- радиус Венеры почти равен земному (0,95), ее масса -- 0,82 массы Земли. Венера довольно хорошо изучена людьми -- к планете приближались как советские АМС серии "Венера", таки американские Маринеры. Венера обращается вокруг Солнца за 224,7 земных суток, но с этой цифрой, в отличие от Меркурия, ничего интересного не связано. Весьма интересный факт связан с периодом вращения самой планеты вокруг своей оси -- 243 земных суток (в обратном направлении) и периодом вращения мощной венерианской атмосферы, которая совершает полный оборот вокруг планеты за... 4 дня! Это соответствует скорости ветра у поверхности Венеры в 100 м/с или 360 км/ч! Она имеет атмосферу, впервые открытую М. В. Ломоносовым в 1761 г. во время прохождения планеты по диску солнца. Планета окутана густым слоем белых облаков, скрывающих ее поверхность. Наличие в атмосфере Венеры густых облаков, вероятно, состоящих из ледяных кристаллов, объясняет высокую отражательную способность планеты - 60% падающего солнечного света отражается от нее. Современные ученые установили, что венерианская атмосфера на 96% состоит из углекислого газа СО2. Присутствуют здесь также азот (почти 4%), кислород, водяные пары, благородные газы и др. (всех меньше 0,1%). Основой густого облачного слоя, расположенного на высоте 50 -- 70 км, являются мелкие капли серной кислоты с концентрацией 75-80% (остальное -- вода, активно "впитываемая" капельками кислоты). На Венере существуют действующие вулканы, так, как достоверно известно, что сейсмическая и тектоническая деятельность на Венере была очень активна сравнительно недавно. Внутреннее строение этого псевдоблизнеца Земли также сходно со строением нашей планеты.

Земля

Наша земля кажется нам такой большой и прочной и столь важной для нас, что мы склонны забывать о том скромном положении, которое оно занимает в семье планет солнечной системы. Правда у Земли все же есть довольно толстая атмосфера, прикрывающая тонкий неоднородный слой воды, и даже титулованный спутник диаметром примерно в ј ее диаметра. Однако эти особые приметы Земли едва ли могут служить достаточным основанием нашему космическому «эгоцентризму». Но, будучи небольшим астрономическим телом, Земля является самой знакомой нам планетой. Радиус земного шара R=6378 км. Вращение земного шара самым естественным образом объясняет смену дня и ночи, восход и заход светил. Некоторые греческие ученые догадывались и о годичном движении Земли вокруг Солнца. Годичное движение Земли перемещает наблюдателя и этим вызывает видимое смещение более близких звезд относительно более далеких. Строго же говоря, вокруг Солнца движется центр тяжести системы Земля - Луна, так называемый барицентр; вокруг этого центра Земля и Луна описывают в течение месяца свои орбиты.

Наши представления о внутреннем строении и физическом состоянии недр земного шара основаны на разнообразных данных, среди которых существенное значение имеют данные сейсмологии (наука о землетрясениях и законах распространения упругих волн в земном шаре). Изучение распространения в земном шаре упругих волн, возникающих при землятресениях или при мощных взрывах, позволило открыть и изучить слоистое строение земных недр.

Воздушный океан, окружающий Землю, - ее атмосфера, - является ареной, на которой разыгрываются разнообразные метеорологические явления. В основном земная атмосфера состоит из азота и кислорода.

Атмосферу земли условно делят на пять слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Большое влияние на многие процессы, происходящие на нашей планете, оказывает гидросфера, или Мировой океан, поверхность которого в 2,5 раза больше площади суши. Земной шар обладает магнитным полем. За пределами плотных слоев атмосферы он опоясан невидимыми тучами из очень быстродвижущихся частиц высокой энергии. Это так называемые пояса радиации. Строение и свойства поверхности нашей планеты, ее оболочек и недр, магнитного поля и поясов радиации исследуются комплексом геофизических наук.

Марс

Когда в 1965 году американская станция Маринер-4 с малого расстояния впервые получила снимки Марса, эти фотографии вызвали сенсацию. Астрономы были готовы увидеть что угодно, только не лунный ландшафт. Именно на Марс возлагали особые надежды те, кто хотел найти жизнь в космосе. Но эти чаяния не оправдались --Марс оказался безжизненным. По современным данным радиус Марса почти вдвое меньше земного (3390 км), а по массе Марс уступает Земле в десять раз. Обращается вокруг Солнца эта планета за 687 земных суток (1,88 года). Солнечные сутки на Марсе практически равны земным --24 ч 37 мин, а ось вращения планеты наклонена к плоскости орбиты на 25), что позволяет сделать вывод о сходной с земной смене(для Земли -- 23 времен года.

Но все мечты ученых о наличии жизни на Красной планете растаяли после того, как был установлен состав атмосферы Марса. Для начала следует указать, что давление у поверхности планеты в 160 раз меньше давления земной атмосферы. А состоит она на 95% из углекислого газа, содержит почти 3% азота, более 1,5% аргона, около 1,3% кислорода, 0,1% водяного пара, присутствует также угарный газ, найдены следы криптона и ксенона. Разумеется, в такой разреженной и негостеприимной атмосфере никакой жизни существовать не может.

Среднегодовая температура на Марсе составляет примерно -60 перепады температур в течение суток вызывают сильнейшие пылевые бури, во время которых густые облака песка и пыли поднимаются до высот в 20 км. Состав марсианской почвы был окончательно выявлен при исследованиях спускаемых американских аппаратов Викинг-1 и Викинг-2. Красноватый блеск Марса вызван обилием в его поверхностных породах оксида железа III (охры). Рельеф Марса весьма интересен. Здесь присутствуют темные и светлые области, как и на Луне, но в отличие от Луны, на Марсе смена цвета поверхности не связана со сменой высот: на одной высоте могут находиться как светлые, так и темные области.

До сих пор ученым не известна природа катаклизма, вызвавшего глобальные изменения климата на Марсе, приведшие к современным условиям.

Внутренняя область Солнечной системы населена разнообразными телами: крупными планетами, их спутниками, а также малыми телами – астероидами и кометами. С 2006 г. в группе планет введена новая подгруппа – планеты-карлики (dwarf planet), обладающие внутренними качествами планет (сфероидальная форма, геологическая активность), но в силу малой массы не способные доминировать в окрестности своей орбиты. Теперь 8 самых массивных планет – от Меркурия до Нептуна – решено называть просто планетами (planet), хотя в разговоре астрономы для однозначности часто называют их «большими планетами», чтобы отличать от планет-карликов. Термин «малая планета», который многие годы применялся к астероидам, теперь рекомендовано не использовать во избежание путаницы с карликовыми планетами

В области больших планет мы видим четкое деление на две группы по 4 планеты в каждой: внешнюю часть этой области занимают планеты-гиганты, а внутреннюю – значительно менее массивные планеты земной группы. Группу гигантов также обычно делят пополам: газовые гиганты (Юпитер и Сатурн) и ледяные гиганты (Уран и Нептун). В группе планет земного типа тоже намечается деление пополам: Венера и Земля чрезвычайно похожи друг на друга по многим физическим параметрам, а Меркурий и Марс уступают им по массе на порядок и почти лишены атмосферы (даже у Марса она в сотни раз меньше земной, а у Меркурия практически отсутствует).

Следует отметить, что среди двух сотен спутников планет можно выделить не менее 16 тел, обладающих внутренними свойствами полноценных планет. Нередко они превосходят своими размерами и массами планеты-карлики, но при этом находятся под контролем гравитации значительно более массивных тел. Речь идет о Луне, Титане, галилеевых спутниках Юпитера и им подобных. Поэтому было бы естественно ввести в номенклатуру Солнечной системы новую группу для таких «подчиненных» объектов планетного типа, назвав их «планеты-спутники». Но пока эта идея в стадии обсуждения.

Вернемся к планетам земного типа. По сравнению с гигантами они привлекательны тем, что имеют твердую поверхность, на которую могут осуществлять посадку космические зонды. Начиная с 1970-х, автоматические станции и самоходные аппараты СССР и США неоднократно садились и успешно работали на поверхности Венеры и Марса. Посадок на Меркурий пока не было, поскольку полеты в окрестности Солнца и посадка на массивное безатмосферное тело сопряжены с большими техническими проблемами.

Изучая планеты земного типа, астрономы не забывают и саму Землю. Анализ снимков из космоса позволил многое понять в динамике земной атмосферы, в строении ее верхних слоев (куда не поднимаются самолеты и даже аэростаты), в процессах, происходящих в ее магнитосфере. Сравнивая между собой строение атмосфер землеподобных планет, многое можно понять в их истории и точнее прогнозировать их будущее. А поскольку все высшие растения и животные обитают на поверхности нашей (или не только нашей?) планеты, то особенно важны для нас характеристики нижних слоев атмосферы. Эта лекция посвящена планетам земного типа; в основном – их внешнему виду и условиям на поверхности.

Яркость планеты. Альбедо

Глядя на планету издалека, мы легко различаем тела с атмосферой и без. Присутствие атмосферы, а точнее – наличие в ней облаков, делает внешность планеты изменчивой и существенно повышает яркость ее диска. Это ясно видно, если расположить планеты в ряд от совершенно безоблачных (безатмосферных) до полностью закрытых облаками: Меркурий, Марс, Земля, Венера. Каменистые безатмосферные тела похожи друг на друга до почти полной неразличимости: сравните, например, крупномасштабные снимки Луны и Меркурия. Даже опытный глаз с трудом различает между собой поверхности этих темных тел, густо покрытых метеоритными кратерами. Зато атмосфера придает любой планете неповторимый вид.

Наличием или отсутствием атмосферы у планеты управляют три фактора: температура и гравитационный потенциал у поверхности, а также глобальное магнитное поле. Такое поле есть только у Земли, и оно существенно защищает нашу атмосферу от потоков солнечной плазмы. Луна потеряла атмосферу (если вообще ее имела) из-за низкой критической скорости у поверхности, а Меркурий – из-за высокой температуры и мощного солнечного ветра. Марс при почти той же гравитации, что у Меркурия, смог сохранить остатки атмосферы, поскольку из-за удаленности от Солнца он холоден и не так интенсивно обдувается солнечным ветром.

По своим физическим параметрам Венера и Земля почти близнецы. У них весьма схожи размер, масса, а значит, и средняя плотность. Их внутренняя структура также должна быть сходной, – кора, мантия, железное ядро, – хотя уверенности в этом пока нет, поскольку сейсмические и прочие геологические данные о недрах Венеры отсутствуют. Разумеется, и в недра Земли мы глубоко не проникали: в большинстве мест на 3-4 км, в отдельных точках на 7-9 км и лишь в одной на 12 км. Это менее 0,2% радиуса Земли. Но сейсмические, гравиметрические и другие измерения позволяют судить о земных недрах весьма детально, а для других планет таких данных почти нет. Детальные карты гравитационного поля получены только для Луны; потоки тепла из недр измерены только на Луне; сейсмометры пока работали тоже лишь на Луне и (не очень чувствительный) на Марсе.

О внутренней жизни планет геологи до сих пор судят по особенностям их твердой поверхности. Например, отсутствие признаков литосферных плит у Венеры существенно отличает ее от Земли, в эволюции поверхности которой тектонические процессы (дрейф континентов, спрединг, субдукция и т. п.) играют определяющую роль. В то же время, некоторые косвенные данные указывают на возможность тектоники плит на Марсе в прошлом, а также тектоники ледяных полей на Европе, спутнике Юпитера. Таким образом, внешнее сходство планет (Венера – Земля) не служит гарантией сходства их внутреннего строения и происходящих в их недрах процессов. А планеты не похожие друг на друга могут демонстрировать сходные геологические явления.

Вернемся к тому, что доступно астрономам и прочим специалистам для прямого изучения, а именно – к поверхности планет или их облачного слоя. В принципе, непрозрачность атмосферы в оптическом диапазоне не является непреодолимым препятствием для изучения твердой поверхности планеты. Радиолокация с Земли и с борта космических зондов позволила изучить поверхности Венеры и Титана сквозь их не прозрачные для света атмосферы. Однако эти работы носят эпизодический характер, а систематические исследования планет до сих пор проводятся оптическими приборами. И что еще более важно: оптическое излучение Солнца служит главным источником энергии для большинства планет. Поэтому способность атмосферы отражать, рассеивать и поглощать это излучение прямо влияет на климат у поверхности планеты.

Ярчайшее светило на ночном небе, не считая Луну, это Венера. Она очень яркая не только из-за относительной близости к Солнцу, но и по причине плотного облачного слоя из капель концентрированной серной кислоты, прекрасно отражающего свет. Наша Земля тоже не слишком темная, поскольку 30-40 % атмосферы Земли заполнены водяными облаками, а они тоже хорошо рассеивают и отражают свет. Вот фотография (рис. вверху), где в кадр одновременно попали Земля и Луна. Этот снимок сделал космический зонд «Галилео», пролетая мимо Земли по пути к Юпитеру. Посмотрите насколько Луна темнее Земли и вообще темнее любой планеты с атмосферой. Это общая закономерность – безатмосферные тела очень темные. Дело в том, что под воздействием космической радиации любое твердое вещество постепенно темнеет.

Утверждение, что поверхность Луны темная, обычно вызывает недоумение: на первый взгляд лунный диск выглядит очень ярким; безоблачной ночью он даже ослепляет нас. Но это лишь по контрасту с еще более темным ночным небом. Для характеристики отражающей способности любого тела используют величину под названием альбедо. Это степень белизны, то есть коэффициент отражения света. Альбедо равное нулю – абсолютная чернота, полное поглощение света. Альбедо равное единице – полное отражение. У физиков и астрономов есть несколько различных подходов к определению альбедо. Ясно, что яркость освещенной поверхности зависит не только от типа материала, но и от его структуры и ориентации относительно источника света и наблюдателя. Например, пушистый только что выпавший снег имеет одно значение коэффициент отражения, а у снега, в который вы наступили ботинком, будет совсем другое значение. А зависимость от ориентации легко продемонстрировать зеркальцем, пуская солнечных зайчиков.

Весь диапазон возможных значений альбедо перекрыт известными космическими объектами. Вот Земля, отражающая около 30% солнечных лучей, в основном, благодаря облакам. А сплошной облачный покров Венеры отражает 77% света. Наша Луна – одно из самых темных тел, в среднем отражающее около 11% света; а ее видимое полушарие из-за наличия обширных темных «морей» отражает свет еще хуже – менее 7%. Но встречаются и еще более темные объекты; например, астероид 253 Матильда с его альбедо в 4%. С другой стороны, есть удивительно светлые тела: спутник Сатурна Энцелад отражает 81% видимого света, а его геометрическое альбедо просто фантастическое – 138%, т. е. он ярче идеально белого диска такого же сечения. Даже трудно понять, как ему это удается. Чистый снег на Земле и то хуже отражает свет; какой же снег лежит на поверхности этого маленького и симпатичного Энцелада?

Тепловой баланс

Температура любого тела определяется балансом между притоком к нему тепла и его потерями. Известны три механизма обмена теплом – излучение, теплопроводность и конвекция. Два последние из них требуют прямого контакта с окружающей средой, поэтому в космическом вакууме важнейшим и, по сути, единственным становится первый механизм – излучение. Для конструкторов космической техники это создает немалые проблемы. Им приходится учитывать несколько источников тепла: Солнце, планета (особенно на низких орбитах) и внутренние агрегаты самого космического аппарата. А для сброса тепла есть лишь один способ – излучение с поверхности аппарата. Для поддержания баланса тепловых потоков конструкторы космической техники регулируют эффективное альбедо аппарата с помощью экранно-вакуумной изоляции и радиаторов. Когда такая система дает сбой, условия в космическом корабле могут стать весьма некомфортными, о чем напоминает нам история экспедиции «Аполлон-13» к Луне.

Но впервые с этой проблемой столкнулись еще в первой трети XX века создатели высотных аэростатов – так называемых стратостатов . В те годы еще не умели создавать сложные системы терморегулирования герметичной гондолы, поэтому ограничивались простым подбором альбедо ее внешней поверхности. Насколько чувствительна температура тела к его альбедо, говорит история первых полетов в стратосферу.

Гондолу своего стратостата FNRS-1 швейцарец Огюст Пикар покрасил с одной стороны в белый, а с другой – в черный цвет. Идея заключалась в том, что регулировать температуру в гондоле можно, поворачивая сферу той или иной стороной к Солнцу. Для вращения снаружи установили пропеллер. Но устройство не заработало, солнце светило с "черной" стороны и внутренняя температура в первом полете поднялась до 38 °C. В следующем полете всю капсулу просто покрыли серебрянкой для отражения солнечных лучей. Внутри стало –16 °C.

Американские конструкторы стратостата Explorer учли опыт Пикара и приняли компромиссный вариант: они покрасили верхнюю часть капсулы в белый, а нижнюю – в черный цвет. Идея состояла в том, что верхняя половина сферы будет отражать солнечное излучение, а нижняя – поглощать тепло от Земли. Этот вариант оказался неплохим, но тоже не идеальным: во время полетов в капсуле было 5 °C.

Советские стратонавты просто теплоизолировали алюминиевые капсулы слоем войлока. Как показала практика, такое решение было самым удачным. Внутреннего тепла, в основном выделяемого экипажем, оказалось достаточно для поддержания стабильной температуры.

Но если планета не имеет собственных мощных источников тепла, то значение альбедо очень важно для ее климата. Например, наша планета поглощает 70% падающего на нее солнечного света, перерабатывая его в собственное инфракрасное излучение, поддерживая за счет него круговорот воды в природе, запасая его в результате фотосинтеза в биомассе, нефти, угле, газе. Луна поглощает почти весь солнечный свет, бездарно превращая его в высокоэнтропийное инфракрасное излучение и за счет этого поддерживая свою довольно высокую температуру. Зато Энцелад своей идеально белой поверхностью гордо отталкивает от себя почти весь солнечный свет, за что и расплачивается чудовищно низкой температурой поверхности: в среднем около –200 °C, а местами до –240 °C. Впрочем, этот спутник – «весь в белом» – не сильно страдает от наружного холода, поскольку у него есть альтернативный источник энергии – приливное гравитационное влияние соседа-Сатурна (), поддерживающее его подледный океан в жидком состоянии. Но у планет земного группы внутренние источники тепла очень слабы, поэтому температура их твердой поверхности в значительной степени зависит от свойств атмосферы – от ее способности, с одной стороны, отражать часть солнечных лучей обратно в космос, а с другой – удерживать энергию излучения, прошедшего сквозь атмосферу к поверхности планеты.

Парниковый эффект и климат планеты

В зависимости от того, как далеко от Солнца находится планета, и какую долю солнечного света она поглощает, формируются температурные условия на поверхности планеты, ее климат. Как выглядит спектр любого самосветящегося тела, например, звезды? В большинстве случаев спектр звезды – это «одногорбая», почти планковская, кривая, у которой положение максимума зависит от температуры поверхности звезды. В отличие от звезды, у спектра планеты два «горба»: часть звездного света она отражает в оптическом диапазоне, а другую часть поглощает и переизлучает в инфракрасном диапазоне. Относительная площадь под этими двумя горбами как раз и определяется степенью отражения света, то есть альбедо.

Посмотрим на две ближайших к нам планеты – Меркурий и Венеру. На первый взгляд, ситуация парадоксальная. Венера отражает почти 80% солнечного света и лишь около 20% поглощает. А Меркурий почти ничего не отражает, а всё поглощает. К тому же, Венера дальше от Солнца, чем Меркурий; на единицу ее облачной поверхности падает в 3,4 раза меньше солнечного света. С учетом разницы в альбедо каждый квадратный метр твердой поверхности Меркурия получает почти в 16 раз больше солнечного тепла, чем та же поверхность на Венере. И, тем не менее, на всей твердой поверхности Венеры адские условия – огромная температура (олово и свинец плавятся!), а Меркурий прохладнее! На полюсах там вообще Антарктида, а на экваторе средняя температура 67 °C. Конечно, днем поверхность Меркурия нагревается до 430 °C, а ночью остывает до –170 °C. Но уже на глубине 1,5-2 метров суточные колебания сглаживаются, и мы можем говорить о средней температуре поверхности 67 °C. Жарковато, конечно, но жить можно. А в средних широтах Меркурия вообще комнатная температура.

В чем же дело? Почему близкий к Солнцу и охотно поглощающий его лучи Меркурий нагрет до комнатной температуры, а Венера – более далекая от Солнца и активно отражающая его лучи, нагрета как печь? Как объяснит это физика?

Атмосфера Земли почти прозрачна: она пропускает 80% приходящего солнечного света. Убежать в космос в результате конвекции воздух не может – планета не отпускает его. Значит, охлаждаться она может только в виде инфракрасного излучения. А если ИК излучение остается запертым, то оно нагревает те слои атмосферы, которые его не выпускают. Эти слои сами становятся источником тепла и частично направляют его обратно к поверхности. Некоторая часть излучения уходит в космос, но основная его часть возвращается к поверхности Земли и греет ее до тех пор, пока не установится термодинамическое равновесие. А как оно устанавливается?

Температура растет, и максимум в спектре смещается (закон Вина) до тех пор, пока не найдет в атмосфере «окно прозрачности», сквозь которое уйдут в космос ИК-лучи. Баланс тепловых потоков устанавливается, но при более высокой температуре, чем могло бы быть при отсутствии атмосферы. Это и есть парниковый эффект.

В своей жизни мы довольно часто сталкиваемся с парниковым эффектом. И не только в виде садового парника или поставленной на плиту кастрюли, которую мы накрываем крышкой, чтобы уменьшить теплоотдачу и ускорить закипание. Как раз эти примеры не демонстрируют чистый парниковый эффект, поскольку в них уменьшается как лучистый, так и конвективный отвод тепла. Гораздо ближе к описанному эффекту пример ясной морозной ночи. При сухом воздухе и безоблачном небе (например, в пустыне) после захода солнца земля быстро остывает, а влажный воздух и облака сглаживают суточные колебания температуры. К сожалению, этот эффект хорошо знаком астрономам: ясные звездные ночи бывают особенно холодными, что делает работу у телескопа весьма некомфортной. Вернувшись к рисунку выше, мы увидим причину: именно пары воды в атмосфере служат главным препятствием для уносящего тепло ИК-излучения.

У Луны нет атмосферы, а значит, нет и парникового эффекта. На ее поверхности термодинамическое равновесие устанавливается в явном виде, никакого обмена излучением между атмосферой и твердой поверхностью нет. У Марса разреженная атмосфера, но все-таки ее парниковый эффект добавляет свои 8 °C. А Земле он добавляет почти 40 °C. Если бы у нашей планеты не было такой плотной атмосферы, температура Земли была бы на 40 °C ниже. Сегодня она составляет по всему земному шару в среднем 15 °C, а было бы –25 °C. Все бы океаны замерзли, поверхность Земли от снега стала бы белой, альбедо бы повысилось, и температура упала бы еще ниже. В общем – страшное дело! Но хорошо, что парниковый эффект в нашей атмосфере работает и греет нас. И еще гораздо сильнее он работает на Венере – более чем на 500 градусов поднимает среднюю венерианскую температуру.

Поверхность планет

До сих пор мы не приступали к детальному изучению иных планет, в основном ограничиваясь наблюдением их поверхности. А насколько важна для науки информация о внешнем виде планеты? Что ценного может поведать нам изображение ее поверхности? Если это газовая планета, как Сатурн или Юпитер, или же твердая, но покрытая плотным слоем облаков, как Венера, то мы видим лишь верхний облачный слой, следовательно, почти никакой информации о самой планете не имеем. Облачная атмосфера, как говорят геологи, это супермолодая поверхность – сегодня она такая, а завтра будет иная, или не завтра, а через 1000 лет, что лишь миг в жизни планеты.

Большое Красное Пятно на Юпитере или два планетарных циклона на Венере наблюдаются уже 300 лет, но говорят нам лишь о некоторых общих свойствах современной динамики их атмосфер. Наши потомки, глядя на эти планеты, будут видеть совсем иную картину, а какую картину могли видеть наши предки, мы никогда не узнаем. Таким образом, глядя со стороны на планеты с плотной атмосферой, мы не можем судить об их прошлом, поскольку видим лишь изменчивый облачный слой. Совсем другое дело – Луна или Меркурий, поверхности которых хранят следы метеоритных бомбардировок и геологических процессов, происходивших в течение последних миллиардов лет.

А подобные бомбардировки планет-гигантов практически не оставляют следов. Одно из таких событий произошло в конце ХХ века прямо на глазах астрономов. Речь идет о комете Шумейкеров-Леви-9. В 1993 г. недалеко от Юпитера была замечена странная цепочка из двух десятков небольших комет. Расчет показал, что это фрагменты одной кометы, пролетавшей рядом с Юпитером в 1992 г. и разорванной на части приливным эффектом его мощного гравитационного поля. Сам эпизод распада кометы астрономы не видели, а застали лишь тот момент, когда цепочка кометных осколков «паровозиком» удалялась от Юпитера. Если бы не произошло распада, то комета, подлетев к Юпитеру по гиперболической траектории, по второй ветви гиперболы ушла бы вдаль и, скорее всего, больше никогда не сблизилась бы с Юпитером. Но тело кометы не выдержало приливного напряжения и разрушилось, а затрата энергии на деформацию и разрыв тела кометы уменьшила кинетическую энергию ее орбитального движения, переведя осколки с гиперболической орбиты на эллиптическую, замкнутую вокруг Юпитера. Расстояние орбиты в перицентре оказалось меньше радиуса Юпитера, и осколки в 1994 г. врезались в планету один за другим.

Происшествие было грандиозное. Каждый «осколочек» кометного ядра – это ледяная глыба размером 1×1,5 км. Они по очереди влетали в атмосферу гигантской планеты со скоростью 60 км/с (вторая космическая скорость для Юпитера), обладая удельной кинетической энергией в (60/11) 2 = 30 раз большей, чем если бы это было столкновение с Землей. Астрономы с большим интересом, находясь в безопасности на Земле, наблюдали космическую катастрофу на Юпитере. К сожалению, осколки кометы били в Юпитер с той стороны, которую не было в этот момент видно с Земли. К счастью, как раз в это время на пути к Юпитеру был космический зонд «Галилео», он увидел эти эпизоды и показал их нам. За счет быстрого суточного вращения Юпитера области столкновения через несколько часов становились доступны и наземным телескопам и, что особенно ценно, околоземным, таким как космический телескоп «Хаббл». Это было очень полезно, поскольку каждая глыба, врезаясь в атмосферу Юпитера, вызывала колоссальный взрыв, разрушающий верхний облачный слой и создающий на некоторое время окно видимости вглубь юпитерианской атмосферы. Так, благодаря кометной бомбардировке, мы ненадолго смогли туда заглянуть. Но прошло 2 месяца и никаких следов на облачной поверхности не осталось: облака затянули все окна, как будто бы ничего не произошло.

Иное дело – Земля . На нашей планете метеоритные шрамы остаются надолго. Перед вами самый популярный метеоритный кратер диаметром около 1 км и возрастом около 50 тыс. лет. Он все еще хорошо виден. Но кратеры, образовавшиеся более 200 млн лет назад, можно найти лишь с помощью тонких геологических методов. Сверху их не видно.

Кстати, есть довольно надежное соотношение между размером упавшего на Землю крупного метеорита и диаметром образованного им кратера – 1:20. Кратер километрового диаметра в Аризоне образовался от удара маленького астероида диаметром около 50 м. А в далекие времена по Земле ударяли и более крупные «снаряды» – и километровые и даже десятикилометровые. Мы знаем сегодня около 200 крупных кратеров; их называют астроблемами (небесными ранами); и каждый год обнаруживают несколько новых. Крупнейший диаметром 300 км найден на юге Африки, его возраст около 2 млрд лет. На территории России крупнейший кратер Попигай в Якутии диаметром 100 км. Наверняка есть и более крупные, например, на дне океанов, где их труднее заметить. Правда, океанское дно в геологическом смысле моложе материков, Но, кажется, в Антарктике есть кратер диаметром 500 км. Он под водой и на его присутствие указывает лишь профиль дна.

На поверхности Луны , где нет ни ветра, ни дождя, где отсутствуют тектонические процессы, метеоритные кратеры сохраняются миллиарды лет. Глядя на Луну в телескоп, мы читаем историю космической бомбардировки. На обратной стороне еще более полезная для науки картина. Похоже, что туда по какой-то причине никогда не падало особенно крупных тел, либо, падая, они не могли пробить лунную кору, которая на обратной стороне вдвое толще, чем на видимой. Поэтому вытекавшая лава не заполняла крупные кратеры и не скрывала исторические детали. На любом клочке лунной поверхности есть метеоритный кратер, – большой или маленький, – и их так много, что более молодые разрушают те, что образовались раньше. Произошло насыщение: Луна не может уже стать более кратенированней, чем она есть. Везде кратеры. И это замечательная летопись истории Солнечной системы. По ней выделено несколько эпизодов активного кратерообразования, в том числе – эпоха тяжелой метеоритной бомбардировки (4,1-3,8 млрд лет назад), оставившая следы на поверхности всех планет земного типа и многих спутников. Почему потоки метеоритов обрушивались на планеты в ту эпоху, нам еще предстоит понять. Нужны новые данные о строении лунных недр и составе вещества на разной глубине, а не только на поверхности, с которой до сих пор были собраны образцы.

Меркурий внешне похож на Луну, поскольку, как и она, лишен атмосферы. Его каменистая поверхность, не подверженная газовой и водной эрозии, длительное время сохраняет следы метеоритной бомбардировки. Среди планет земного типа Меркурий хранит самые старые геологические следы возрастом около 4 млрд лет. Но на поверхности Меркурия нет крупных морей, заполненных темной застывшей лавой и похожих на лунные моря, хотя крупных ударных кратеров там не меньше, чем на Луне.

Размером Меркурий примерно в полтора раза больше Луны, но своей массой он превосходит Луну в 4,5 раза. Дело в том, что Луна почти целиком каменистое тело, тогда как у Меркурия огромное металлическое ядро, по-видимому, состоящее в основном из железа и никеля. Радиус его металлического ядра составляет около 75% радиуса планеты (а у Земли лишь 55%). Объем металлического ядра Меркурия составляет 45% объема планеты (а у Земли лишь 17%). Поэтому средняя плотность Меркурия (5,4 г/см 3) почти равна средней плотности Земли (5,5 г/см 3) и существенно превосходит среднюю плотность Луны (3,3 г/см 3). Имея большое металлическое ядро, Меркурий мог бы своей средней плотностью превосходить Землю, если бы не малая сила тяжести на его поверхности. Имея массу всего 5,5% земной, он обладает почти втрое меньшей силой тяжести, которая не в состоянии так уплотнить его недра, как уплотнились недра Земли, у которой даже силикатная мантия имеет плотность около (5 г/см 3).

Меркурий трудно исследовать, поскольку он движется близко к Солнцу. Чтобы запустить к нему межпланетный аппарат с Земли, его нужно сильно затормозить, т. е. разогнать в направлении противоположном орбитальному движению Земли; только тогда он начнет «падать» в сторону Солнца. Сделать это сразу с помощью ракеты невозможно. Поэтому в двух до сих пор осуществленных полетах к Меркурию были использованы гравитационные маневры в поле Земли, Венеры и самого Меркурия, для торможения космического зонда и перевода его на орбиту Меркурия.

Впервые к Меркурию отправился в 1973 г. «Маринер-10» (NASA). Он сначала сблизился с Венерой, притормозил в ее гравитационном поле и затем трижды прошел вблизи Меркурия в 1974-75 гг. Поскольку все три встречи происходили в одной и той же области орбиты планеты, а ее суточное вращение синхронизовано с орбитальным, все три раза зонд фотографировал одно и то же полушарие Меркурия, освещенное Солнцем.

В течение следующих нескольких десятилетий полетов к Меркурию не было. И только в 2004 г. удалось запустить второй аппарат – MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging ; NASA). Осуществив несколько гравитационных маневров вблизи Земли, Венеры (дважды) и Меркурия (трижды), зонд в 2011 г. вышел на орбиту вокруг Меркурия и 4 года вел исследования планеты.

Работа вблизи Меркурия осложняется тем, что планета в среднем в 2,6 раза ближе к Солнцу, чем Земля, поэтому поток солнечных лучей там почти в 7 раз больше. Без специального «солнечного зонтика» электронная начинка зонда перегрелась бы. Сейчас готовится третья экспедиция к Меркурию под названием BepiColombo , в ней участвуют европейцы и японцы. Запуск намечен на осень 2018 г. Полетят сразу два зонда, которые выйдут на орбиту вокруг Меркурия в конце 2025 г. после пролета вблизи Земли, двух вблизи Венеры и шести вблизи Меркурия. Кроме детального исследования поверхности планеты и ее гравитационного поля, намечено детальное изучение магнитосферы и магнитного поля Меркурия, представляющего для ученых загадку. Хотя Меркурий вращается очень медленно, а его металлическое ядро должно было давно остыть и затвердеть, планета имеет дипольное магнитное поле, уступающее земному по напряженности в 100 раз, но все же поддерживающее вокруг планеты магнитосферу. Современная теория генерации магнитного поля у небесных тел, – так называемая теория турбулентного динамо, – требует наличия в недрах планеты слоя жидкого проводника электричества (у Земли это внешняя часть железного ядра) и сравнительно быстрого вращения. По какой причине ядро Меркурия до сих пор остается жидким, пока не ясно.

У Меркурия есть удивительная особенность, которой нет больше ни у одной планеты. Движение Меркурия по орбите вокруг Солнца и его вращение вокруг своей оси четко синхронизованы друг с другом: за время двух орбитальных периодов он совершает три оборота вокруг оси. Вообще говоря, с синхронным движением астрономы были знакомы давно: наша Луна синхронно вращается вокруг оси и обращается вокруг Земли, периоды этих двух движений одинаковы, т. е. они находятся в соотношении 1:1. И у других планет некоторые спутники демонстрируют ту же особенность. Это результат действия приливного эффекта.

Чтобы проследить за движением Меркурия (рис. выше), поставим на его поверхности стрелочку. Видно, что за один оборот вокруг Солнца, т. е. за один меркурианский год, планета повернулась вокруг оси ровно полтора раза. За это время день в районе стрелки сменился ночью, прошла половина солнечных суток. Еще один годичный оборот – и в районе стрелки вновь наступает день, истекли одни солнечные сутки. Таким образом, на Меркурии солнечные сутки длятся два меркурианских года.

Мы подробно будем говорить о приливах в гл. 6. Именно в результате приливного влияния со стороны Земли Луна синхронизовала два своих движения – осевое вращение и орбитальное обращение. Земля очень сильно влияет на Луну: вытянула ее фигуру, стабилизировала вращение. Орбита Луны близка к круговой, поэтому Луна движется по ней с почти постоянной скоростью на почти постоянном расстоянии от Земли (степень этого «почти» мы обсуждали в гл. 1). Поэтому приливный эффект меняется слабо и контролирует вращение Луны вдоль всей орбиты, приводя к резонансу 1:1.

В отличие от Луны, Меркурий движется вокруг Солнца по существенно эллиптичной орбите, то приближаясь к светилу, то удаляясь от него. Когда он далеко, в районе афелия орбиты, приливное влияние Солнца ослабевает, поскольку оно зависит от расстояния как 1/R 3 . Когда Меркурий приближается к Солнцу, приливы действуют намного сильнее, поэтому лишь в области перигелия Меркурий эффективно синхронизует два своих движения – суточное и орбитальное. Второй закон Кеплера говорит нам, что угловая скорость орбитального движения максимальная в точке перигелия. Именно там происходит «приливный захват» и синхронизация угловых скоростей Меркурия – суточной и орбитальной. В точке перигелия они в точности равны друг другу. Двигаясь дальше, Меркурий почти перестает ощущать приливное влияние Солнца и сохраняет свою угловую скорость вращения, постепенно снижая угловую скорость орбитального движения. Поэтому за один орбитальный период он успевает сделать полтора суточных оборота и вновь попадает в лапы приливного эффекта. Очень простая и красивая физика.

Поверхность Меркурия почти неотличима от лунной. Даже профессиональные астрономы, когда появились первые детальные снимки Меркурия, друг другу показывали их и спрашивали: «А ну-ка угадай, Луна это или Меркурий?». Угадать, действительно, трудно. И там, и там избитая метеоритами поверхность. Но особенности, конечно, есть. Хотя крупные лавовые моря на Меркурии отсутствуют, его поверхность не однородна: есть области более старые и более молодые (основанием для этого служит подсчет метеоритных кратеров). От Луны Меркурий отличается и наличием характерных уступов и складок на поверхности, возникших в результате сжатия планеты при остывании ее огромного металлического ядра.

Перепады температуры на поверхности Меркурия больше, чем на Луне. В дневные часы на экваторе 430 °C, а ночью –173 °C. Но грунт Меркурия служит хорошим теплоизолятором, поэтому на глубине около 1 м суточные (или двухгодичные?) перепады температуры уже не чувствуются. Так что, если вы прилетите на Меркурий, то первое, что нужно сделать – вырыть землянку. В ней на экваторе будет около 70 °C; жарковато. Но в районе географических полюсов в землянке будет около –70 °C. Так что без труда можно найти ту географическую широту, на которой в землянке вам будет комфортно.

Самые низкие температуры наблюдаются на дне полярных кратеров, куда никогда не попадаю солнечные лучи. Именно там обнаружились залежи водяного льда, которые прежде были нащупаны радиолокаторами с Земли, а затем подтверждены приборами космического зонда MESSENGER. Происхождение этого льда пока обсуждается. Его источниками могут быть как кометы, так и выходящие из недр планеты пары воды.

На Меркурии есть один из самых больших ударных кратеров в Солнечной системе – Равнина Жары (Caloris Basin ) диаметром 1550 км. Это след от удара астероида диаметром не менее 100 км, чуть не расколовшего маленькую планету. Случилось это около 3,8 млрд лет назад, в период так называемой «поздней тяжелой бомбардировки» (Late Heavy Bombardment ), когда по не до конца понятным причинам увеличилось число астероидов и комет на орбитах, пересекающих орбиты планет земной группы.

Когда в 1974 г. «Маринер-10» сфотографировал Равнину Жары, мы еще не знали, что получилось на противоположной стороне Меркурия после этого страшного удара. Ясно, что если по шару стукнули, то возбуждаются звуковые и поверхностные волны, которые распространяются симметрично, проходят через «экватор» и собираются в антиподной точке, диаметрально противоположной точке удара. Возмущение там стягивается в точку, и амплитуда сейсмических колебаний стремительно возрастает. Это похоже на то, как погонщики скота щелкают своим кнутом: энергия и импульс волны практически сохраняются, а толщина кнута стремится к нулю, поэтому скорость колебания увеличивается и становится сверхзвуковой. Ожидалось, что в области Меркурия, противоположной бассейну Caloris будет картина невероятного разрушения. В общем, почти так и оказалось: там обнаружилась обширная холмистая область с рифленой поверхностью, хотя я ожидал, что там будет кратер-антипод. Мне представлялось, что при схлопывании сейсмической волны произойдет явление «зеркальное» падению астероида. Мы наблюдаем это при падении капли на спокойную поверхность воды: сначала она создает маленькое углубление, а затем вода устремляется обратно и выкидывает небольшую новую каплю вверх. На Меркурии этого не случилось, и мы теперь понимает почему. Его недра оказались неоднородны и точной фокусировки волн не произошло.

В целом рельеф Меркурия более гладкий, чем у Луны. Например, стенки меркурианских кратеров не такие высокие. Вероятной причиной этого служит большая сила тяжести и более теплые и мягкие недра Меркурия.

Венера – вторая планета от Солнца и самая загадочная из планет земной группы. Не ясно, каково происхождение ее очень плотной атмосферы, почти целиком состоящей из углекислого газа (96,5 %) и азота (3,5 %) и вызывающей мощный парниковый эффект. Не понятно, почему Венера так медленно вращается вокруг оси – в 244 раза медленнее Земли, и к тому же – в противоположном направлении. При этом массивная атмосфера Венеры, а точнее – ее облачный слой, за четверо земных суток облетает вокруг планеты. Это явление называют суперротацией атмосферы. При этом атмосфера трется о поверхность планеты и должна была бы давно притормозиться. Ведь не может она долго двигаться вокруг планеты, твердое тело которой практически стоит на месте. Но атмосфера вращается, да еще и в направлении противоположном вращению самой планеты. Понятно, что от трения о поверхность энергия атмосферы рассеивается, а ее момент импульса передается телу планеты. Значит, есть приток энергии (очевидно – солнечной), за счет которой работает тепловая машина. Вопрос: как реализована эта машина? Как энергия Солнца трансформируется в движение венерианской атмосферы?

Из-за медленного вращения Венеры кориолисовы силы на ней слабее, чем на Земле, поэтому атмосферные циклоны там менее компактны. По сути, их всего два: один в северном полушарии, другой в южном. Каждый из них «наматывается» от экватора на свой полюс.

Верхние слои венерианской атмосферы детально исследовали пролетные (осуществляя гравитационный маневр) и орбитальные зонды – американские, советские, европейский и японский. Аппараты серии «Венера» в течение нескольких десятилетий запускали туда советские инженеры, и это был самый успешный наш прорыв в области исследования планет. Главной задачей было посадить на поверхность спускаемый аппарат, чтобы посмотреть, что там под облаками.

Конструкторы первых зондов, как и авторы научно-фантастических произведений тех лет, ориентировались на результаты оптических и радиоастрономических наблюдений, из которых следовало, что Венера – это более теплый аналог нашей планеты. Именно поэтому в середине XX века все фантасты, – от Беляева, Казанцева и Стругацких до Лема, Брэдбери и Хайнлайна, – представляли Венеру как негостеприимный (жаркий, болотистый, с ядовитой атмосферой), но в целом подобный Земле мир. По этой же причине первые посадочные аппараты венерианских зондов делали не очень прочными, не способными сопротивляться большому давлению. И они гибли, спускаясь в атмосфере, один за другим. Затем их корпуса стали делать покрепче, рассчитанные на давление в 20 атмосфер. Но и этого оказалось мало. Тогда конструкторы, «закусив удила», сделали титановый зонд, выдерживающий давление в 180 атм. И он благополучно сел на поверхность («Венера-7», 1970 г.). Заметим, что далеко не каждая подводная лодка выдерживает такое давление, царящее на глубине около 2 км в океане. Выяснилось, что у поверхности Венеры давление не опускается ниже 92 атм (9,3 МПа, 93 бар), а температура составляет 464 °C.

С мечтой о гостеприимной Венере, похожей на Землю каменноугольного периода, было окончательно покончено именно в 1970 г. Впервые аппарат, рассчитанный на такие адские условия («Венера-8»), успешно опустился и работал на поверхности в 1972 г. С этого момента посадки на поверхность Венеры стали рутинной операцией, однако долго поработать там не удается: через 1-2 часа внутренность аппарата нагревается, и электроника выходит из строя.

Первые искусственные спутники появились у Венеры в 1975 г. («Венера-9 и -10»). В целом чрезвычайно удачной оказалась работа на поверхности Венеры спускаемых аппаратов «Венера-9…-14» (1975-1981 гг.), изучивших как атмосферу, так и поверхность планеты в месте посадки, сумевших даже взять пробы грунта и определить его химический состав и механические свойства. Но наибольший эффект среди поклонников астрономии и космонавтики вызвали переданные ими фотопанорамы мест посадки, сначала черно-белые, а позже – цветные. Кстати, венерианское небо, при взгляде с поверхности, оранжевое. Красиво! До сих пор (2017 г.) эти снимки остаются единственными и вызывают у планетологов большой интерес. Их продолжают обрабатывать и время от времени находят на них новые детали.

Существенный вклад в изучение Венеры в те годы внесла и американская космонавтика. Пролетные аппараты «Маринер-5 и -10» изучали верхние слои атмосферы. «Пионер-Венера-1» (1978 г.) стал первым американским спутником Венеры и провел радиолокационные измерения. А «Пионер-Венера-2» (1978 г.) послал в атмосферу планеты 4 спускаемых аппарата: один большой (315 кг) с парашютом в экваториальную область дневного полушария и три малых (по 90 кг) без парашютов – в средние широты и на север дневного полушария, а также на ночное полушарие. Ни один из них не создавался для работы на поверхности, однако один из малых аппаратов благополучно приземлился (без парашюта!) и проработал на поверхности более часа. Этот случай позволяет почувствовать, насколько велика плотность атмосферы у поверхности Венеры. Атмосфера Венеры почти в 100 раз массивнее земной атмосферы, а ее плотность у поверхности составляет 67 кг/м 3 , что в 55 раз плотнее земного воздуха и лишь в 15 раз уступает плотности жидкой воды.

Весьма непросто было создать крепкие научные зонды, которые выдерживают давление венерианской атмосферы, такое же, как на километровой глубине в наших океанах. Но еще сложнее было заставить их противостоять окружающей температуре 464 °C при наличии столь плотного воздуха. Поток тепла сквозь корпус колоссальный. Поэтому даже самые надежные аппараты работали не более двух часов. Чтобы скорее опуститься на поверхность и продлить там свою работу, «Венеры» в ходе посадки сбрасывали парашют и продолжали спуск, тормозясь лишь небольшим щитком на своем корпусе. Удар о поверхность смягчало специальное демпфирующее устройство – посадочная опора. Конструкция оказалась настолько удачной, что «Венера-9» без проблем села на склон с наклоном 35° и нормально работала.

Учитывая высокое альбедо Венеры и колоссальную плотность ее атмосферы, ученые сомневались, что у поверхности будет достаточно солнечного света для фотографирования. К тому же, у дна газового океана Венеры вполне мог висеть плотный туман, рассеивающий солнечный свет и не позволяющий получить контрастное изображение. Поэтому на первых посадочных аппаратах ставили галогенные ртутные лампы для освещения почвы и создания светового контраста. Но оказалось, что естественного света там вполне достаточно: на Венере светло, как в пасмурный день на Земле. И контраст при естественном освещении тоже вполне приемлемый.

В октябре 1975 г. посадочные аппараты «Венера-9 и -10» через свои орбитальные блоки передали на Землю первые в истории снимки поверхности другой планеты (если не брать в расчет Луну). На первый взгляд перспектива на этих панорамах выглядят странно искаженной: причиной служит поворот направления съемки. Эти снимки получены телефотометром (оптико-механическим сканером), «взгляд» которого медленно перемещался от горизонта под ноги посадочного аппарата и затем к другому горизонту: получалась развертка на 180°. Два телефотометра на противоположных бортах аппарата должны были дать полную панораму. Но крышки на объективах открывались не всегда. Например, на «Венере-11 и -12» не открылась ни одна из четырех.

Один из наиболее красивых экспериментов по исследованию Венеры был проделан с помощью зондов «ВеГа-1 и -2» (1985 г.). Их название расшифровывается как «Венера-Галлей», поскольку после отделения спускаемых аппаратов, направленных к поверхности Венеры, полетные части зондов ушли исследовать ядро кометы Галлея и впервые успешно это сделали. Посадочные аппараты были тоже не совсем обычными: главная часть аппарата садилась на поверхность, а при спуске от нее отделялся аэростат, изготовленный французскими инженерами, и около двух суток летал в атмосфере Венеры на высоте 53-55 км, передавая на Землю данные о температуре, давлении, освещенности и видимости в облаках. Благодаря мощному ветру, дующему на этой высоте со скоростью 250 км/ч, аэростаты успели облететь значительную часть планеты. Красиво!

На фотографиях с мест посадки видны лишь небольшие участки венерианской поверхности. А можно ли всю Венеру увидеть сквозь облака? Можно! Радиолокатор видит сквозь облака. К Венере летало два советских спутника с радиолокаторами бокового обзора и один американский. По их наблюдениям составлены радиокарты Венеры с весьма высоким разрешением. На общей карте его трудно продемонстрировать, но на отдельных фрагментах карты оно ясно видно. Цветом на радиокартах показаны уровни: голубой и синий – это низменности; будь на Венере вода, это были бы океаны. Но жидкая вода на Венере существовать не может. Да и газообразной воды там тоже практически нет. Зеленоватые и желтоватые – это континенты, назовем их так. Красное и белое – самые высокие точки на Венере. Это «венерианский Тибет» – самое высокое плато. Высочайшая вершина на нем – гора Максвелл – возвышается на 11 км.

О недрах Венеры, об ее внутреннем строении надежных фактов нет, поскольку сейсмические исследования до сих пор там не проводились. К тому же, медленное вращение планеты не позволяет измерить ее момент инерции, который мог бы рассказать о распределении плотности с глубиной. Пока теоретические представления базируются на сходстве Венеры с Землей, а видимое отсутствие тектоники плит на Венере объясняется отсутствием на ней воды, которая на Земле служит «смазкой», позволяя плитам скользить и подныривать друг под друга. Вкупе с высокой температурой поверхности, это приводит к замедлению или даже полному отсутствию конвекции в теле Венеры, снижает скорость охлаждения ее недр и может объяснить отсутствие у нее магнитного поля. Все это выглядит логично, но требует экспериментальной проверки.

Кстати, о Земле . Подробно обсуждать третью от Солнца планету не буду, поскольку я не геолог. К тому же, каждый из нас имеет общее представление о Земле даже на основе школьных знаний. Но в связи с изучением других планет замечу, что и недра своей планеты нам тоже не до конца понятны. Почти каждый год происходят крупные открытия в геологии, порой обнаруживают даже новые слои в недрах Земли. Мы даже не точно знаем температуру в ядре своей планеты. Посмотрите свежие обзоры: некоторые авторы считают, что температура на границе внутреннего ядра около 5000 K, а другие – что более 6300 K. Это результаты теоретических расчетов, в которых фигурируют не вполне надежные параметры, описывающие свойства вещества при температуре в тысячи кельвинов и давлении в миллионы бар. Пока эти свойства не будут надежно изучены в лаборатории, точных знаний о недрах Земли мы не получим.

Уникальность Земли среди подобных ей планет состоит в наличии магнитного поля и жидкой воды на поверхности, причем второе, по-видимому, является следствием первого: магнитосфера Земли защищает от потоков солнечного ветра нашу атмосферу и, опосредованно, гидросферу. Для генерации магнитного поля, как сейчас представляется, в недрах планеты должен быть жидкий электропроводящий слой, охваченный конвективным движением, и быстрое суточное вращение, обеспечивающее кориолисову силу. Только при этих условиях включается динамо-механизм, усиливающий магнитное поле. Венера практически не вращается, поэтому у нее нет магнитного поля. Железное ядро у маленького Марса давно остыло и отвердело, поэтому он также лишен магнитного поля. Меркурий, казалось бы, очень медленно вращается и должен был остыть раньше Марса, но вполне ощутимое дипольное магнитное поле с напряженностью раз в 100 слабее земного у него есть. Парадокс! За поддержание железного ядра Меркурия в расплавленном состоянии сейчас считается ответственным приливное влияние Солнца. Пройдут миллиарды лет, остынет и затвердеет железное ядро Земли, лишив нашу планету магнитной защиты от солнечного ветра. И единственной твердой планетой с магнитным полем останется, – как это ни странно, – Меркурий.

А теперь обратимся к Марсу . Его внешний вид сразу же привлекает нас по двум причинам: даже на фотографиях, полученных издалека, видны белые полярные шапки и полупрозрачная атмосфера. Это родним Марс с Землей: полярные шапки рождают мысль о наличии воды, а атмосфера – о возможности дыхания. И хотя на Марсе с водой и воздухом не всё так благополучно, как кажется на первый взгляд, эта планета давно привлекает исследователей.

Раньше астрономы изучали Марс в телескоп и поэтому с нетерпением ожидали моментов, называемых «противостояниями Марса». Что же чему в эти моменты противостоит?

С точки зрения земного наблюдателя, в момент противостояния Марс оказывается по одну сторону от Земли, а Солнце – по другую. Понятно, что именно в эти моменты Земля и Марс сближаются на минимальное расстояние, Марс виден на небе всю ночь и хорошо освещен Солнцем. Земля делает свой оборот вокруг Солнца за год, а Марс – за 1,88 года, поэтому средний промежуток времени между противостояниями занимает немногим более двух лет. Последнее противостояние Марса было в 2016 г, правда, оно было не особенно близким. Орбита у Марса заметно эллиптическая, поэтому максимальные сближения с ним Земли случаются, когда Марс находится в районе перигелия своей орбиты. На Земле (в нашу эпоху) это конец августа. Поэтому августовские и сентябрьские противостояния называют «великими»; в эти моменты, наступающие раз в 15-17 лет, наши планеты сближаются менее чем на 60 млн км. Такое будет в 2018 году. А супертесное противостояние состоялось в 2003 г.: тогда до Марса было всего 55,8 млн км. В связи с этим родился новый термин – «величайшие противостояния Марса»: такими теперь считают сближения менее чем на 56 млн км. Они происходят 1-2 раза в столетие, однако в нынешнем веке их будет даже три – ждите 2050 и 2082 гг.

Но даже в моменты великих противостояний в телескоп с Земли мало что видно на Марсе. Вот рисунок астронома, который смотрит на Марс в телескоп. Неподготовленный человек посмотрит и разочаруется – вообще ничего не увидит, лишь маленькую розовую «капельку». Но в тот же самый телескоп опытный глаз астронома видит больше. Полярную шапку астрономы давно заметили, еще столетия назад. А также – темные и светлые области. Темные по традиции назвали морями, а светлые – континентами.

Повышенный интерес к Марсу возник в эпоху великого противостояния 1877 года: – к тому времени уже были построены хорошие телескопы, и астрономы сделали несколько важных открытий. Американский астроном Асаф Холл обнаружил спутники Марса – Фобос и Деймос. А итальянский астроном Джованни Скиапарелли зарисовал загадочные линии на поверхности планеты – марсианские каналы. Конечно, Скиапарелли не был первый, увидевший каналы: некоторые из них замечали и до него (например – Анджело Секки). Но после Скиапарелли эта тема на многие годы стала доминирующей в изучении Марса.

Наблюдения деталей поверхности Марса, таких, как «каналы» и «моря», положили начало новому этапу в изучении этой планеты. Скиапарелли считал, что «моря» Марса действительно могут быть водоемами. Поскольку соединяющим их линиям нужно было дать название, Скиапарелли назвал их «каналами» (canali), подразумевая под этим морские проливы, а отнюдь не рукотворные сооружения. Он полагал, что по этим каналам в приполярных областях в период таяния полярных шапок действительно течет вода. После открытия на Марсе «каналов» некоторые ученые высказали предположение об их искусственной природе, что послужило основанием для гипотез о существовании на Марсе разумных существ. Но сам Скиапарелли не считал эту гипотезу научно обоснованной, хотя и не исключал наличия на Марсе жизни, возможно даже разумной.

Однако мысль об искусственной системе оросительных каналов на Марсе стала укрепляться в других странах. Отчасти этому способствовало то, что итальянское canali было представлено на английском как canal (рукотворная водная магистраль), а не как channel (природный морской пролив). Да и на русском слово «канал» подразумевает искусственное сооружение. Идея о марсианах увлекла тогда многих, и не только писателей (вспомним Герберта Уэллса с его «Войной миров», 1897 г.), но и исследователей. Самым известным из них стал Персиваль Ловелл. Этот американец получил прекрасное образование в Гарварде, в равной степени овладев математикой, астрономией и гуманитарными предметами. Но как отпрыск родовитого семейства, он скорее стал бы дипломатом, писателем или путешественником, чем астрономом. Однако прочитав работы Скиапарелли о каналах, он увлекся Марсом и поверил в существование жизни и цивилизации на нем. В общем, он забросил все прочие дела и занялся изучением Красной планеты.

На деньги своего богатого семейства Ловелл построил обсерваторию и начал рисовать каналы. Заметим, что фотография тогда была в зачаточном состоянии, а глаз опытного наблюдателя способен заметить мельчайшие детали в условиях атмосферной турбулентности, искажающей изображения далеких объектов. Карты марсианских каналов, созданные в Ловелловской обсерватории, были самыми детальными. К тому же, будучи хорошим литератором, Ловелл написал несколько занимательнейших книг – Mars and its canals (1906), Mars as the abode of life (1908) и др. Только одна из них была переведена на русский еще до революции: «Марс и жизнь на нем» (Одесса: Матезис, 1912). Эти книги увлекли целое поколение надеждой встретить марсиан.

Следует признать, что история с марсианскими каналами так и не получила исчерпывающего объяснения. Есть старые рисунки с каналами и современные фотографии – без них. Где каналы? Что это было? Заговор астрономов? Массовое помешательство? Самовнушение? Трудно упрекнуть в этом ученых, отдавших жизнь науке. Возможно, разгадка этой истории ждет нас впереди.

А сегодня мы изучаем Марс, как правило, не в телескоп, а при помощи межпланетных зондов. (Хотя и телескопы до сих пор используются для этого и порой приносят важные результаты.) Полет зондов к Марсу осуществляется по самой энергетически выгодной полуэллиптической траектории. С помощью Третьего закона Кеплера легко вычислить длительность такого перелета. Из-за большого эксцентриситета марсианской орбиты время перелета зависит от сезона запуска. В среднем полет с Земли на Марс длится 8-9 месяцев.

Можно ли пилотируемую экспедицию отправить на Марс? Это большая и интересная тема. Казалось бы, для этого нужна лишь мощная ракета-носитель и удобный космический корабль. Достаточно мощных носителей пока ни у кого нет, но над ними работают американские, российские и китайские инженеры. Можно не сомневаться, что такая ракета в ближайшие годы будет создана государственными предприятиями (например, наша новая ракета «Ангара» в своем самом мощном варианте) или частными компаниями (Илон Маск – почему бы и нет).

А существует ли корабль, в котором космонавты проведут многие месяцы по пути к Марсу? Пока такого нет. Все существующие (Союз, Шэньчжоу) и даже проходящие испытания (Dragon V2, CST-100, Orion) – очень тесные и пригодны лишь для полета на Луну, куда всего 3 дня пути. Правда, есть идея после взлета надувать дополнительные помещения. Осенью 2016 г. надувной модуль был испытан на МКС и неплохо себя показал. Таким образом, техническая возможность перелета на Марс скоро появится. Так в чем же проблема? В человеке!

Мы постоянно подвергаемся облучению естественной радиоактивности земных пород, потоками космических частиц или искусственно созданной радиоактивностью. У поверхности Земли фон слаб: нас защищают магнитосфера и атмосфера планеты, а также ее тело, прикрывая нижнюю полусферу. На низкой околоземной орбите, где работают космонавты МКС, атмосфера уже не помогает, поэтому радиационный фон возрастает в сотни раз. В открытом космосе он еще в несколько раз выше. Это существенно ограничивает длительность безопасного пребывания человека в космосе. Отметим, что работникам атомной промышленности запрещается в год получать больше 5 бэр – это почти безопасно для здоровья. Космонавтам в год разрешают получать до 10 бэр (приемлемый уровень опасности), что и ограничивает длительность их работы на МКС одним годом. А полет на Марс с возвращением на Землю в лучшем случае (если не случится мощных вспышек на Солнце) приведет к дозе в 80 бэр, что создаст большую вероятность онкологического заболевания. Именно это и есть главное препятствие для полета человека на Марс. Можно ли защитить астронавтов от радиации? Теоретически – можно.

Нас на Земле защищает атмосфера, толщина которой по количеству вещества на квадратный сантиметр эквивалентна 10-метровому слою воды. Легкие атомы лучше рассеивают энергию космических частиц, поэтому защитный слой космического корабля может иметь толщину 5 метров. Но даже в тесном корабле масса этой защиты будет измеряться сотнями тонн. Отправить такой корабль к Марсу не под силу современной и даже перспективной ракете.

Ну, хорошо. Допустим, нашлись добровольцы, готовые рискнуть своим здоровьем и отправиться на Марс в одну сторону без радиационной защиты. Смогут ли они после посадки там работать? Можно ли рассчитывать, что они выполнят задание? Вспомните, как космонавты, проведя полгода на МКС, чувствуют себя сразу после посадки на землю? Их выносят на руках, кладут на носилки и две-три недели они реабилитируются, восстанавливая крепость костей и силу мышц. А на Марсе их никто не вынесет на руках. Там нужно будет самостоятельно выходить и работать в тяжелых пустотных скафандрах, как на Луне. Ведь давление атмосферы на Марсе практически нулевое. Скафандр очень тяжелый. На Луне в нем было двигаться относительно легко, поскольку сила тяжести там 1/6 земной, а за три дня полета к Луне мышцы не успевают ослабнуть. На Марс же космонавты прибудут, проведя многие месяцы в условиях невесомости и радиации, а сила тяжести на Марсе в два с половиной раза больше лунной. К тому же и на самой поверхности Марса радиация почти такая же, как в открытом космосе: магнитного поля у Марса нет, и атмосфера у него слишком разреженная, чтобы служить защитой. Так что кинофильм «Марсианин» – это фантастика, очень красивая, но нереальная.

Как мы себе раньше представляли марсианскую базу? Прилетели, поставили на поверхности лабораторные модули, живем в них и работаем. А теперь вот как: прилетели, окопались, соорудили убежища на глубине минимум 2-3 метра (это достаточно надежная защита от радиации) и стараемся пореже и не надолго выходить на поверхность. Выходы на поверхность эпизодические. В основном сидим под грунтом и управляем работой марсоходов. Так ими и с Земли можно управлять, даже еще эффективнее, дешевле и без риска для здоровья. Что и делается уже несколько десятилетий.

О том, что узнали о Марсе роботы – .

Иллюстрации подготовлены В. Г. Сурдиным и Н. Л. Васильевой с использованием фотографий NASA и изображений с публичных сайтов

Вступление

Среди многочисленных небесных светил, изучаемых современной астрономией, особое место занимают планеты. Ведь все мы хорошо знаем, что Земля, на которой мы живем, является планетой, так что планеты - тела, в основном подобные нашей Земле.

Но в мире планет мы не встретим даже двух, совершенно похожих друг на друга. Разнообразие физических условий на планетах очень велико. Расстояние планеты от Солнца (а значит, и количество солнечного тепла, и температура поверхности), её размеры, напряжение силы тяжести на поверхности, ориентировка оси вращения, определяющая смену времён года, наличие и состав атмосферы, внутреннее строение и многие другие свойства различны у всех девяти планет Солнечной системы.

Говоря о разнообразии условий на планетах, мы можем глубже познать законы их развития и выяснить их взаимосвязь между теми или иными свойствами планет. Так, например, от размеров, массы и температуры планеты зависит её способность удерживать атмосферу того или иного состава, а наличие атмосферы в свою очередь влияет на тепловой режим планеты.

Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии.

Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле - геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли.

К планетам земной группы относятся планеты: Меркурий, Венера, Земля и Марс.

Меркурий.

Общие сведения.

Меркурий - самая близкая к Солнцу планета солнечной системы. Среднее расстояние от Меркурия до Солнца всего лишь 58 млн. км. Среди больших планет имеет наименьшие размеры: ее диаметр 4865 км (0,38 диаметра Земли), масса 3,304*10 23 кг (0,055 массы Земли или 1:6025000 массы Солнца); средняя плотность 5,52 г/см 3 . Меркурий - яркое светило, но увидеть его на небе не так просто. Дело в том, что, находясь вблизи Солнца, Меркурий всегда виден для нас недалеко от солнечного диска, отход от него то влево (к востоку), то вправо (к западу) только на небольшое расстояние, которое не превосходит 28 О. Поэтому его можно увидеть только в те дни года, когда он отходит от Солнца на самое большое расстояние. Пусть, например, Меркурий отодвинулся от Солнца влево. Солнце и все светила в своем суточном движении плывут по небу слева направо. Поэтому сначала заходит Солнце, а через час с небольшим заходит Меркурий, и надо искать эту планету низко над Западным горизонтом.

Движение.

Меркурий движется вокруг Солнца в среднем на расстоянии 0,384 астрономические единицы (58 млн. км) по эллиптической орбите с большим эксцентриситетом е-0,206; в перигелии расстояние до Солнца составляет 46 млн.км., а в афелии 70 млн. км. Полный облет вокруг Солнца планета совершает за три земных месяца или за 88 суток со скоростью 47,9 км/сек. Двигаясь по своему пути вокруг Солнца, Меркурий вместе с тем поворачивается вокруг своей оси так, что к Солнцу обращена всегда одна и таже его половина. Это значит, что на одной стороне Меркурия всегда день, а на другой – ночь. В 60-х гг. с помощью радиолокационных наблюдений было установлено, что Меркурий вращается вокруг оси в прямом направлении (т.е. как и в орбитальном движении) с периодом 58,65 суток (относительно звезд). Продолжительность Солнечных суток на Меркурии составляет 176 дней. Экватор наклонен к плоскости его орбиты на 7°. Угловая скорость осевого вращения Меркурия составляет 3/2 орбитального и соответствует угловой скорости его движения в орбите, когда планета находится в перигелии. На основании этого можно предположить, что скорость вращения Меркурия обусловлена приливными силами со стороны Солнца.

Атмосфера.

Меркурий, возможно, лишен атмосферы, хотя поляризационные и спектральные наблюдения указывают на наличие слабой атмосферы. С помощью “Маринера-10” было установлено присутствие у Меркурия сильно разряженной газовой оболочки, состоящей главным образом из гелия. Эта атмосфера состоит в динамическом равновесии: каждый атом гелия находится в ней около 200 дней, после чего покидает планету, его же место занимает другая частица из плазмы солнечного ветра. Кроме гелия, в атмосфере Меркурия найдено ничтожное количество водорода. Его примерно в 50 раз меньше, чем гелия.

Оказалось также, что Меркурий обладает слабым магнитным полем, напряженность которого составляет всего 0,7% земного. Наклон оси диполя к оси вращения Меркурия 12 0 (у Земли 11 0)

Давление у поверхности планеты примерно в 500 млрд. раз меньше, чем у поверхности Земли.

Температура.

Меркурий гораздо ближе к Солнцу, чем Земля. Поэтому Солнце на нем светит и греет в 7 раз сильнее, чем у нас. На дневной стороне Меркурия страшно жарко, там вечное пекло. Измерения показывают, что температура там поднимается до 400 О выше нуля. Зато на ночной стороне должен быть всегда сильный мороз, который, вероятно, доходит до 200 О и даже 250 О ниже нуля. Получается так, что одна его половина – горячая каменная пустыня, а другая половина – ледяная пустыня, быть может, покрытая замерзшими газами.

Поверхность.

С пролетной траектории космического аппарата “Маринер-10” в 1974 г. было сфотографировано свыше 40% поверхности Меркурия с разрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров – наиболее очевидная черта его поверхности, которую по-первому впечатлению можно уподобить Луне.

Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40-70 км, но и значительно большее число кратеров меньших размеров, в пределах 5-70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности.

Степень эрозии и сглаживание кратеров различна. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести.

Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400-600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне.

В преобладающей материковой части поверхности Меркурия можно выделить как сильно кратеризированные районы, с наибольшей степенью деградации кратеров, так и занимающие обширные территории старые межкратерные плоскогорья, свидетельствующие о широко развитом древнем вулканизме. Это наиболее древние сохранившиеся формы рельефа планеты. Выровненные поверхности котловин, очевидно, покрыты наиболее толстым слоем раздробленных пород – реголита. Наряду с небольшим числом кратеров здесь встречаются складчатые гребки, напоминающие лунные. Некоторые из примыкающих к котловинам равнинных участков, вероятно, образовались при отложений выброшенного из них материала. Вместе с тем для большинства равнин найдены вполне определенные свидетельства их вулканического происхождения, однако это вулканизм более позднего времени, чем на межкратерных плоскогорьях. Внимательное изучение обнаруживает еще одну интереснейшую особенность, проливающую свет на историю формирования планеты. Речь идет о характерных следах тектонической активности в глобальном масштабе в виде специфических крутых уступов, или откосов-эскарпов. Эскарпы имеют протяженность от 20-500 км и высоту склонов от нескольких сотен метров до 1-2 км. По своей морфологии и геометрии расположения на поверхности они отличаются от обычны тектонических разрывов и сбросов, наблюдаемых на Луне и Марсе, и скорее образовались за счет надвигов, наслоений вследствие напряжения в поверхностном слое, возникших при сжатии Меркурия. Об этом свидетельствует горизонтальное смещение валов некоторых кратеров.

Некоторые из эскарпов подверглись ударной бомбардировке и частично разрушены. Это означает, что они образовались раньше, чем кратеры на их поверхности. По сужении эрозии этих кратеров можно прийти к заключению, что сжатие коры происходило в период образования “морей” около 4 млрд. лет назад. Наиболее вероятной причиной сжатия нужно, видимо, считать начало остывания Меркурия. Согласно другому интересному предположению, выдвинутому рядом специалистов, альтернативным механизмом мощной тектонической активности планеты в этот период могло быть приливное замедление вращения планеты примерно в 175 раз: от первоначально предполагаемого значения около 8 часов до 58,6 суток.

Венера.

Общие сведения.

Венера - вторая по близости к Солнцу планета, почти такого же размера, как Земля, а её масса более 80 % земной массы. По этим причинам Венеру иногда называют близнецом или сестрой Земли. Однако поверхность и атмосфера этих двух планет совершенно различны. На Земле есть реки, озера, океаны и атмосфера, которой мы дышим. Венера - обжигающе горячая планета с плотной атмосферой, которая была бы губительной для человека. Среднее расстояние от Венеры до Солнца 108,2 млн. км; оно практически постоянно, поскольку орбита Венеры ближе к окружности, чем наша планета. Венера получает от Солнца в два с лишним раза больше света и тепла, чем Земля. Тем не менее с теневой стороны на Венере господствует мороз более 20 градусов ниже нуля, так как сюда не попадают солнечные лучи в течение очень долгого времени. Планета имеет очень плотную, глубокую и очень облачную атмосферу, не позволяющую нам увидеть поверхность планеты. Атмосферу (газовую оболочку) открыл М. В. Ломоносов в 1761 году, что так же показало сходство Венеры с Землёй. Спутников планета не имеет.

Движение.

Венера имеет почти круговую орбиту (эксцентриситет 0,007), которую она обходит за 224,7 земных суток со скоростью 35 км/сек. на расстоянии 108,2 млн. км от Солнца. Поворот вокруг оси Венера совершает за 243 земных дня - максимальное время среди всех планет. Вокруг своей оси Венера вращается в обратную сторону, то есть в направлении, противоположном движению по орбите. Такое медленное, и притом обратное, вращение означает, что, если смотреть с Венеры, Солнце восходит и заходит всего лишь два раза за год, поскольку венерианские сутки равны 117 земным. Ось вращения Венеры почти перпендикулярна к орбитальной плоскости (наклон 3°), поэтому там отсутствуют сезоны года - один день похож на другой, имеет одинаковую продолжительность и одинаковую погоду. Эта погодная однотипность еще больше усиливается специфичностью венерианской атмосферы - ее сильным парниковым эффектом. Так же Венера, подобно Луне, имеет свои фазы.

Температура.

Температура около 750 К по всей поверхности и днем, и ночью. Причина столь высокой температуры у поверхности Венеры - парниковым эффект: солнечные лучи сравнительно легко проходят сквозь облака ее атмосферы и нагревают поверхность планеты, но тепловое инфракрасное излучение самой поверхности выходит сквозь атмосферу обратно в космос с большим трудом. На Земле, где количество углекислого газа в атмосфере невелико, природный парниковый эффект повышает глобальную температуру на 30° С, а на Венере же он поднимает температуру еще на 400°С. Изучая физические последствия сильнейшего парникового эффекта на Венере, мы хорошо представляем себе те результаты, к которым может привести накапливание излишков тепла на Земле, вызываемое растущей концентрацией углекислого газа в атмосфере из-за сжигания ископаемого топлива - угля и нефти.

В 1970 г. первый космический корабль, прибывший на Венеру, смог выдержать страшную жару лишь около одного часа, но этого как раз хватило, чтобы послать на Землю данные об условиях на поверхности.

Атмосфера.

Загадочная атмосфера Венеры была центральным пунктом программы исследований при помощи автоматических аппаратов за последние два десятилетия. Важнейшими аспектами ее исследований были химический состав, вертикальная структура и динамика воздушной среды. Большое внимание отводилось облачному покрову, играющему роль непреодолимого барьера для проникновения в глубь атмосферы электромагнитных волн оптического диапазона. При телевизионной съемке Венеры удавалось получить изображение только облачного покрова. Непонятными были необычайная сухость воздушной среды и ее феноменальный парниковый эффект, за счет которого фактическая температура поверхности и нижний слоев тропосферы оказалась более чем на 500 выше эффективной (равновесной).

Атмосфера Венеры крайне жаркая и сухая, благодаря парниковому эффекту. Она представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Давление у поверхности 90 бар (как в земных морях на глубине 900 м). Космические корабли приходится конструировать так, чтобы они выдерживали сокрушительную, раздавливающую силу атмосферы.

Атмосфера Венеры состоит в основном из углекислого газа (CO 2)-97%, который способен действовать как своего рода покрывало, задерживая солнечное тепло, а также небольшого количества азота (N 2)-2,0%, паров воды (H 2 O)-0,05% и кислорода (О)-0,1%. В виде малых примесей обнаружены соляная кислота (HCl) и плавиковая кислота (HF). Общее количество углекислого газа на Венере и Земле приблизительно одинаковое. Только на Земле он связан в осадочных породах и отчасти поглощен водными массами океанов, на Венере же весь он сконцентрирован в атмосфере. Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний.

Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты (H 2 SO 4). Верхний слой облаков удален от поверхности на 90 км, температура там около 200 К; нижний слой – на 30 км, температура около 430 К. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 суток; это явление называют суперротацией, и объяснения ему пока не найдено.

Поверхность.

Поверхность Венеры покрыта сотнями тысяч вулканов. Есть несколько очень больших: высотой 3 км и шириной 500 км. Но большая часть вулканов имеет 2-3 км в поперечнике и около 100 м в высоту. Излияние лавы на Венере происходит значительно дольше, чем на Земле. Венера слишком горяча для того, чтобы там были лед, дожди или бури, поэтому там не происходит существенных атмосферных воздействий (выветривания). А значит, вулканы и кратеры почти не изменились с тех пор, как они образовались миллионы лет назад.

Венера покрыта твердыми породами. Под ними циркулирует раскаленная лава, вызывающая напряжение тонкого поверхностного слоя. Лава постоянно извергается из отверстий и разрывов в твердых породах. Кроме того, вулканы все время выбрасывают струи мелких капелек серной кислоты. В некоторых местах густая лава, постепенно сочась, скапливается в виде огромных луж шириной до 25 км. В других местах громадные пузыри лавы образуют на поверхности купола, которые затем опадают.

На поверхности Венеры обнаружена порода, богатая калием, ураном и торием, что в земных условиях соответствует составу не первичных вулканических пород, а вторичных, прошедших экзогенную переработку. В других местах на поверхности залегает крупнощебенчатый и глыбовый материал темных пород с плотностью 2,7-2,9 г/см и другие элементы, характерные для базальтов. Таким образом, поверхностные породы Венеры оказались такими же, как на Луне, Меркурии и Марсе, излившимися магматическими породами основного состава.

О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения.

Венера отнюдь не гостеприимный мир, как это когда - то предполагалось. Со своей атмосферой из углекислого газа, облаков из серной кислоты и страшной жарой она совершенно не пригодна для человека. Под тяжестью этой информации рухнули некоторые надежды: ведь менее чем 20 лет назад многие учёные считали Венеру более обещающим объектом для космических исследований, чем Марс.

Земля.

Общие сведения.

Земля - третья от Солнца планета Солнечной системы. По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Средний радиус Земли 6371,032 км, полярный - 6356,777 км, экваториальный - 6378,160 км. Масса - 5,976*1024 кг. Средняя плотность Земли 5518 кг/м³. Площадь поверхности Земли 510,2 млн. км², из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км³, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомолунгма в Гималаях) 8848 м. Горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20% поверхности суши, саванны и редколесья - около 20%, леса - около 30%, ледники - свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодьями.

У Земли имеется единственный спутник - Луна.

Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям, Земля стала местом, где возникла и получила развитие органическая жизнь. По современным космогоническим представлениям планета образовалась примерно 4,6 - 4,7 млрд. лет назад из захваченного притяжением Солнца протопланетного облака. На образование первых, наиболее древних из изученных горных пород потребовалось 100-200 млн. лет. Примерно 3,5 млрд. лет назад возникли условия, благоприятные для возникновения жизни. Homo sapiens (Человек разумный) как вид появился примерно полмиллиона лет назад, а формирование современного типа человека относят ко времени отступления первого ледника, то есть около 40 тыс. лет назад.

Движение.

Подобно другим планетам она движется вокруг Солнца по эллиптической орбите, эксцентриситет которой 0,017. Расстояние от Земли до Солнца в разных точках орбиты неодинаковое. Среднее же расстояние около 149,6 млн. км. В процессе движения нашей планеты вокруг Солнца плоскость земного экватора перемещается параллельно самой себе таким образом, что в одних участках орбиты земной шар наклонен к Солнцу своим северным полушарием, а в других - южным. Период обращения вокруг Солнца составляет 365,256 дней, при суточном вращении - 23 ч. 56 мин. Ось вращения Земли расположена под углом в 66.5º к плоскости её движения вокруг Солнца.

Атмосфера .

Атмосфера Земли состоит на 78% из азота и на 21% из кислорода (других газов в атмосфере очень мало); это результат длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли была богата водородом, который затем улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего.

Наша планета окружена обширной атмосферой. В соответствии с температурой составом и физическими свойствами атмосферы можно разделить на разные слои. Тропосфера - это область, лежащая между поверхностью Земли и высотой в 11 км. Это довольно толстый и густой слой, содержащий большую часть водяных паров, находящихся в воздухе. В ней имеют место почти все атмосферные явления, которые непосредственно интересуют жителей Земли. В тропосфере находятся облака, атмосферные осадки и т. д. Слой отделяющий тропосферу от следующего атмосферного слоя - стратосферы, называется тропопауза. Это область весьма низких температур.

Состав стратосферы такой же, как и тропосферы, но в ней возникает и концентрируется озон. Ионосфера, то есть ионизированный слой воздуха, образуется как в тропосфере, так и в более низких слоях. Она отражает высоко частотные радиоволны.

Атмосферное давление на уровне поверхности океана составляет при нормальных условиях приблизительно 0,1 МПа. Полагают, что земная атмосфера сильно изменилась в процессе эволюции: обогатилась кислородом и приобрела современный состав в результате длительного взаимодействия с горными породами и при участии биосферы, т. е. растительных и животных организмов. Доказательством того, что такие изменения действительно произошли, служат, например, залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах, они содержат громадное количество углерода, который раньше входил в состав земной атмосферы в виде углекислого газа и окиси углерода. Ученые считают, что древняя атмосфера произошла из газообразных продуктов вулканических извержений; о ее составе судят по химическому анализу образцов газа, "замурованных" в полостях древних горных пород. В исследованных образцах, возраст которых приблизительно 3,5 млрд. лет содержится приблизительно 60% углекислого газа, а остальные 40% - соединения серы, аммиак, хлористый и фтористый водород. В небольшом количестве найдены азот и инертные газы. Весь кислород был химически связанным.

Для биологических процессов на Земле огромное значение имеет озоносфера - слой озона, находящийся на высоте от 12 до 50 км. Область выше 50-80 км называют ионосферой. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Если бы не озоновый слой, потоки излучения доходили бы до поверхности Земли, производя разрушения в имеющихся там живых организмах. Наконец, на расстояниях более 1000 км газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса.

Строение планеты.

Основную роль в исследовании внутреннего строения Земли играют сейсмические методы, основанные на исследовании распространения в ее толще упругих волн (как продольных, так и поперечных), возникающих при сейсмических событиях - при естественных землетрясениях и в результате взрывов. На основании этих исследований Землю условно разделяют на три области: кору, мантию и ядро (в центре). Внешний слой - кора - имеет среднюю толщину порядка 35 км. Основные типы земной коры - континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора промежуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше. Поверхностные отложения занимают слой толщиной около 2 км. Под ними находится гранитный слой (на континентах его толщина 20 км), а ниже - примерно 14-километровый (и на континентах, и в океанах) базальтовый слой (нижняя кора). Плотность в центре Земли около 12,5 г/см³. Средние плотности составляют: 2,6 г/см³- у поверхности Земли, 2,67 г/см³- у гранита, 2,85 г/см³- у базальта.

На глубину примерно от 35 до 2885 км простирается мантия Земли, которую называют также силикатной оболочкой. Она отделяется от коры резкой границей (так называемая граница Мохоровича), глубже которой скорости как продольных, так и поперечных упругих сейсмических волн, а также механическая плотность скачкообразно возрастают. Плотности в мантии увеличиваются по мере возрастания глубины примерно от 3,3 до 9,7 г/см³. В коре и (частично) в мантии располагаются обширные литосферные плиты. Их вековые перемещения не только определяют дрейф континентов, заметно влияющий на облик Земли, но имеют отношение и к расположению сейсмических зон на планете. Еще одна обнаруженная сейсмическими методами граница (граница Гутенберга) - между мантией и внешним ядром - располагается на глубине 2775 км. На ней скорость продольных волн падает от 13,6 км/с (в мантии) до 8,1 км/с (в ядре), а скорость поперечных волн уменьшается от 7,3 км/с до нуля. Последнее означает, что внешнее ядро является жидким. По современным представлениям внешнее ядро состоит из серы (12%) и железа (88%). Наконец, на глубинах свыше 5120 км сейсмические методы обнаруживают наличие твердого внутреннего ядра, на долю которого приходится 1,7% массы Земли. Предположительно, это железо-никелевый сплав (80% Fe, 20% Ni).

Гравитационное поле Земли с высокой точностью описывается законом всемирного тяготения Ньютона. Ускорение свободного падения над поверхностью Земли определяется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Ускорение свободного падения у поверхности планеты составляет 9,8 м/c².

Земля обладает также магнитным и электрическим полями. Магнитное поле над поверхностью Земли складывается из постоянной (или меняющейся достаточно медленно) и переменной частей; последнюю обычно относят к вариациям магнитного поля. Главное магнитное поле имеет структуру, близкую к дипольной. Магнитный дипольный момент Земли, равный 7,98T10^25 единиц СГСМ, направлен примерно противоположно механическому, хотя в настоящее время магнитные полюсы несколько смещены по отношению к географическим. Их положение, впрочем, меняется со временем, и хотя эти изменения достаточно медленны, за геологические промежутки времени, по палеомагнитным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Напряженности магнитного поля на северном и южном магнитных полюсах равны соответственно 0,58 и 0,68 Э, а на геомагнитном экваторе - около 0,4Э.

Электрическое поле над поверхностью Земли в среднем имеет напряженность около 100 В/м и направлено вертикально вниз - это так называемое поле ясной погоды, но это поле испытывает значительные (как периодические, так и нерегулярные) вариации.

Луна.

Луна - естественный спутник Земли и ближайшее к нам небесное тело. Среднее расстояние до Луны - 384000 километров, диаметр Луны около 3476 км. Средняя плотность Луны составляет 3,347 г/см³ или около 0,607 средней плотности Земли. Масса спутника 73 триллиона тонн. Ускорение силы тяжести на поверхности Луны 1,623 м/с².

Луна движется вокруг Земли со средней скоростью 1,02 км/сек по приблизительно эллиптической орбите в том же направлении, в котором движется подавляющее большинство других тел Солнечной системы, то есть против часовой стрелки, если смотреть на орбиту Луны со стороны Северного полюса мира. Период обращения Луны вокруг Земли, так называемый сидерический месяц равен 27,321661 средних суток, но подвержен небольшим колебаниям и очень малому вековому сокращению.

Не будучи защищена атмосферой, поверхность Луны нагревается днем до +110о С, а ночью остывает до -120° С, однако, как показали радионаблюдения, эти огромные колебания температуры проникают вглубь лишь на несколько дециметров вследствие чрезвычайно слабой теплопроводности поверхностных слоев.

Рельеф лунной поверхности был в основном выяснен в результате многолетних телескопических наблюдений. "Лунные моря", занимающие около 40 % видимой поверхности Луны, представляют собой равнинные низменности, пересеченные трещинами и невысокими извилистыми валами; крупных кратеров на морях сравнительно мало. Многие моря окружены концентрическими кольцевыми хребтами. Остальная, более светлая поверхность покрыта многочисленными кратерами, кольцевидными хребтами, бороздами и так далее.

Марс.

Общие сведения.

Марс - четвертая планета Солнечной системы. Марс – от греческого «Mas» – мужская сила – бог войны. По основным физическим характеристикам Марс относится к планетам земной группы. По диаметру он почти вдвое меньше Земли и Венеры. Среднее расстояние от Солнца составляет 1,52 а.е. Экваториальный радиус равен 3380 км. Средняя плотность планеты - 3950 кг/м³. Марс имеет два спутника - Фобос и Деймос.

Атмосфера.

Планета окутана газовой оболочкой - атмосферой, которая имеет меньшую плотность, чем земная. Даже в глубоких впадинах Марса, где давление атмосферы наибольшее, оно приблизительно в 100 раз меньше, чем у поверхности Земли, а на уровне марсианских горных вершин - в 500-1000 раз меньше. По составу она напоминает атмосферу Венеры и содержит 95,3% углекислого газа с примесью 2,7% азота, 1,6% аргона, 0,07% окиси углерода, 0,13% кислорода и приблизительно 0,03% водяного пара, содержание которого изменяется, а также примеси неона, криптона, ксенона.

Средняя температура на Марсе значительно ниже, чем на Земле около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С - вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать -125° С. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способны долго удерживать тепло.

Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Глобальная пылевая буря бушевала с сентября 1971 по январь 1972г., подняв в атмосферу на высоту более 10 км около миллиарда тонн пыли.

Водяного пара в атмосфере Марса совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными, хотя имеют разнообразные формы и виды: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах защищенных от ветра). Над низинами, каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы.

Как показали снимки с американских посадочных станций "Викинг-1" и "Викинг-2" марсианское небо в ясную погоду имеет розоватый цвет, что объясняется рассеянием солнечного света на пылинках и подсветкой дымки оранжевой поверхностью планеты. При отсутствии облаков газовая оболочка Марса значительно прозрачнее, чем земная, в том числе и для ультрафиолетовых лучей, опасных для живых организмов.

Сезоны.

Солнечные сутки на Марсе длятся 24 ч. 39 мин. 35 с. Значительный наклон экватора к плоскости орбиты приводит к тому, что на одних участках орбиты освещаются и обогреваются Солнцем преимущественно северные широты Марса, на других - южные, т. е. происходит смена сезонов. Марсианский год длится около 686,9 дней. Смена времен года на Марсе происходит так же, как на Земле. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния от экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. Эллиптичность марсианской орбиты приводит к значительным различиям климата северного и южного полушарий: в средних широтах зима холоднее, а лето теплее, чем в южных, но короче, чем в северных.. Когда в северном полушарии Марса наступает лето, северная полярная шапка быстро уменьшается, но в это время растет другая - возле южного полюса, где наступает зима. В конце XIX - начале XX века считали, что полярные шапки Марса - это ледники и снега. По современным данным, обе полярные шапки планеты - северная и южная - состоят из твердой двуокиси углерода, т. е. сухого льда, который образуется при замерзании углекислого газа, входящего в состав марсианской атмосферы, и из водяного льда с примесью минеральной пыли.

Строение планеты.

Вследствие малой массы сила тяжести на Марсе почти в три раза ниже, чем на Земле. В настоящее время структура гравитационного поля Марса детально изучена. Она указывает на небольшое отклонение от однородного распределения плотности в планете. Ядро может иметь радиус до половины радиуса планеты. По-видимому, оно состоит из чистого железа или из сплава Fe-FeS (железо-сульфид железа) и, возможно, растворенного в них водорода. По-видимому, ядро Марса частично или полностью пребывает в жидком состоянии.

Марс должен иметь мощную кору толщиной 70-100 км. Между ядром и корой находится силикатная мантия, обогащенная железом. Красные окислы железа, присутствующие в поверхностных породах, определяют цвет планеты. Сейчас Марс продолжает остывать.

Сейсмическая активность планеты слабая.

Поверхность.

Поверхность Марса, на первый взгляд, напоминает лунную. Однако на самом деле его рельеф отличается большим разнообразием. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов и марсотрясения. Глубокие шрамы на лице бога войны оставили метеориты, ветер, вода и льды.

Поверхность планеты состоит как бы из двух контрастных частей: древних высокогорий, покрывающих южное полушарие, и более молодых равнин, сосредоточенных в северных широтах. Кроме того, выделяются два крупных вулканических района - Элизиум и Фарсида. Разница высот между горными и равнинными областями достигает 6 км. Почему разные районы так сильно отличаются друг от друга до сих пор неясно. Возможно, такое деление связано с очень давней катастрофой - падением на Марс крупного астероида.

Высокогорная часть сохранила следы активной метеоритной бомбардировки, происходившей около 4 млрд. лет назад. Метеоритные кратеры покрывают 2/3 поверхности планеты. На старых высокогорьях их почти столько же, сколько на Луне. Но многие марсианские кратеры из-за выветривания успели "потерять форму". Некоторые из них, по всей видимости, когда-то были размыты потоками воды. Северные равнины выглядят совершенно иначе. 4 млрд. лет назад на них было множество метеоритных кратеров, но потом катастрофическое событие, о котором уже упоминалось, стерло их с 1/3 поверхности планеты и ее рельеф в этой области начал формироваться заново. Отдельные метеориты падали туда и позже, но в целом ударных кратеров на севере мало.

Облик этого полушария определила вулканическая деятельность. Некоторые из равнин сплошь покрыты древними изверженными породами. Потоками жидкой лавы растекались по поверхности, застывали, по ним текли новые потоки. Эти окаменевшие "реки" сосредоточены вокруг крупных вулканов. На окончаниях лавовых языков наблюдаются структуры, похожие на земные осадочные породы. Вероятно, когда раскаленные изверженные массы растапливали слои подземного льда, на поверхности Марса образовывались достаточно обширные водоемы, которые постепенно высыхали. Взаимодействие лавы и подземного льда привело также к появлению многочисленных борозд и трещин. На далеких от вулканов низменных областях северного полушария простираются песчаные дюны. Особенно много их у северной полярной шапки.

Обилие вулканических пейзажей свидетельствует о том, что в далеком прошлом Марс пережил достаточно бурную геологическую эпоху, скорее всего она закончилась около миллиарда лет тому назад. Наиболее активные процессы происходили в областях Элизиум и Фарсида. В свое время они буквально были выдавлены из недр Марса и сейчас возвышаются над его поверхностью в виде грандиозных вздутий: Элизиум высотой 5 км, Фарсида - 10 км. Вокруг этих вздутий сосредоточены многочисленные разломы, трещины, гребни - следы давних процессов в марсианской коре. Наиболее грандиозная система каньонов глубиной несколько километров - долина Маринера - начинается у вершины гор Фарсида и тянется 4 тыс. километров к востоку. В центральной части долины ее ширина достигает нескольких сот километров. В прошлом, когда атмосфера Марса была более плотной, в каньоны могла стекать вода, создавая в них глубокие озера.

Вулканы Марса - по земным меркам явления исключительные. Но даже среди них выделяется вулкан Олимп, расположенный на северо-западе гор Фарсида. Диаметр основания этой горы достигает 550 км, а высота - 27 км, т.е. она в три раза превосходит Эверест, высочайшую вершину Земли. Олимп увенчан огромным 60-километровым кратером. К востоку от самой высокой части гор Фарсида обнаружен другой вулкан - Альба. Хотя он не может соперничать с Олимпом по высоте, диаметр его основания почти в три раза больше.

Эти вулканические конусы возникли в результате спокойных излияний очень жидкой лавы, похожей по составу на лаву земных вулканов Гавайских островов. Следы вулканического пепла на склонах других гор позволяют предположить, что иногда на Марсе происходили и катастрофические извержения.

В прошлом огромную роль в формировании марсианского рельефа играла проточная вода. На первых этапах исследования Марс представлялся астрономам пустынной и безводной планетой, но когда поверхность Марса удалось сфотографировать с близкого расстояния, оказалось, что на старых высокогорьях часто встречаются словно бы оставленные текущей водой промоины. Некоторые из них выглядят так, будто много лет назад их пробили бурные, стремительные потоки. Тянутся они иногда на многие сотни километров. Часть этих "ручьев" обладает довольно почтительным возрастом. Другие долины очень похожи на русла спокойных земных рек. Своим появлением они, вероятно, обязаны таянию подземного льда.

Некоторые дополнительные сведения о Марсе удается получить косвенными методами на основе исследований его природных спутников - Фобоса и Деймоса.

Спутники Марса.

Спутники Марса были открыты 11 и 17 августа 1877 года во время великого противостояния американским астрономом Асафом Холлом. Такие названия спутники получили из греческой мифологии: Фобос и Деймос - сыновья Ареса (Марса) и Афродиты (Венеры), всегда сопровождали своего отца. В переводе с греческого “фобос” означает “страх”, а “деймос” - “ужас”.

Фобос. Деймос.

Оба спутника Марса движутся почти точно в плоскости экватора планеты. С помощью космических аппаратов установлено, что Фобос и Деймос имеют неправильную форму и в своем орбитальном положении остаются повернутыми к планете всегда одной и той же стороной. Размеры Фобоса составляют около 27 км, а Деймоса - около 15 км. Поверхность спутников Марса состоит из очень темных минералов и покрыта многочисленными кратерами. Один из них - на Фобосе имеет поперечник около 5,3 км. Кратеры, вероятно, рождены метеоритной бомбардировкой, происхождение системы параллельных борозд неизвестно. Угловая скорость орбитального движения Фобоса настолько велика, что он, обгоняя осевое вращение планеты, восходит, в отличие от других светил, на западе, а заходит на востоке.

Поиски жизни на Марсе.

Долгое время на Марсе велись поиски форм внеземной жизни. При исследовании планеты космическими аппаратами серии «Викинг» были выполнены три сложных биологических эксперимента: пиролизное разложение, газовый обмен, разложение метки. Они основаны на опыте изучения земной жизни. Эксперимент по пиролизному разложению основывался на определении процессов фотосинтеза с участием углерода, эксперимент с разложением метки был основан на допущении о необходимости воды для существования, а эксперимент по газовому обмену учитывал, что марсианская жизнь должна использовать воду в качестве растворителя. Хотя все три биологических эксперимента дали положительный результат, они, вероятно, имеют небиологическую природу и могут быть объяснены неорганическими реакциями питательного раствора с веществом марсианской природы. Итак, можно подвести итог, что Марс - планета, не имеющая условия для возникновения жизни.

Заключение

Мы познакомились с современным состоянием нашей планеты и планет Земной группы. Будущее нашей планеты, да и всей планетной системы, если не произойдёт ничего непредвиденного, кажется ясным. Вероятность того, что установившийся порядок движения планет будет нарушен какой-нибудь странствующей звездой, невелика, даже в течение нескольких миллиардов лет. В ближайшем будущем не приходится ожидать сильных изменений в потоке энергии Солнца. Вероятно, могут повториться ледниковые периоды. Человек способен изменить климат, но при этом может совершить ошибку. Континенты в последующие эпохи будут подниматься и опускаться, но мы надеемся, что процессы будут происходить медленно. Время от времени возможны падения массивных метеоритов.

Но в основном Солнечная система будет сохранять свой современный вид.

План.

1. Введение.

2. Меркурий.

3. Венера.

6. Заключение.

7. Литература.

Планета Меркурий.

Поверхность Меркурия.

Планета Венера.

Поверхность Венеры.

Планета Земля.

Поверхность Земли.

Планета Марс.

Поверхность Марса.

Глава 8. Планеты земной группы: Меркурий, Венера, Земля

Образование планет

Сравнение размеров планет земной группы. Слева направо: Меркурий, Венера, Земля, Марс. Фото с сайта: http://commons.wikimedia.org

Согласно наиболее распространенной гипотезе, планеты и Солнце якобы образовались из единой "солнечной" туманности. Согласно одним ученым, планеты произошли после образования Солнца. Согласно другой гипотезе, образование протопланет предшествует образованию протосолнца. Солнце и планеты образовались из обширного облака пыли, состоявшей из песчинок графита и кремния, а также окислов железа, смерзшихся с аммиаком, метаном и другими углеводородами. Столкновения этих песчинок привели к образованию камешков диаметром до нескольких сантиметров, рассеянных по колоссальному комплексу колец, вращавшихся вокруг Солнца. Образовавшийся из "солнечной туманности" диск обладал, как уже говорилось, неустойчивостью, которая привела к образованию нескольких газовых колец, которые довольно скоро превратились в гигантские газовые протопланеты. Образование таких протосолнца и протопланет, когда протосолнце еще не светило, якобы имело весьма существенное значение для дальнейшей эволюции Солнечной системы.

Помимо этой гипотезы, существует гипотеза о "гравитационном захвате" звездой Солнцем газово-пылевой туманности, из которой и конденсировались все планеты солнечной системой. Часть вещества этой туманности осталась свободной и путешествует в Солнечной системе в виде комет и астероидов. Эту гипотезу в 30-е годы ХХ века предложил О.Ю. Шмидт. В 1952 г. возможность частичного захвата Солнцем галактической газо-пылевой туманности допускал К.А. Ситников, а в 1956 г. – В.М. Алексеев. В 1968 г. В.М. Алексеев, основываясь на идеях академика А.Н. Колмогорова, построил модель полного захвата, доказав возможность этого явления. Этой точки зрения придерживаются и некоторые современные ученые астрофизики. Но до окончательного ответа на вопрос: "Как, из чего, когда и где произошла Солнечная система" очень далеко. Скорее всего, в образовании планетного ряда Солнечной системы участвовали многие факторы, но из газа и пыли планеты никак образоваться не могли. У планет гигантов – Сатурна, Юпитера, Урана и Нептуна – имеются кольца, состоящие из камней, песка и ледяных глыб, но никакой конденсации их в сгустки и спутники не происходит. Могу предложить альтернативную гипотезу, объясняющую возникновение планет и их спутников в Солнечной системе. Все эти тела Солнце захватило в свою гравитационную ловушку из пространства Галактики практически уже в сформированном (готовом) виде. Солнечная планетная система была сформирована (бкувально собрана) из готовых космических тел, которые в пространстве Галактики двигались по близким орбитам и в одном направлении с Солнцем. К их сближению с Солнцем привело гравитационное возмущение, что в галактиках случается нередко. Вполне возможно, что захват планет и их спутников Солнцем произошел не одноразово. Могло случиться так, что Солнце захватило не отдельные планеты, блуждавшие в просторах Галактики, а целые системы, состоящие из планет гигантов и их спутников. Вполне возможно, что планеты земной группы когда-то были спутниками планет гигантов, но Солнце своей мощной гравитацией сорвало их с орбит вокруг планет гигантов и "заставило" кружиться только вокруг себя. В этот катастрофический момент Земля "смогла" захватить в свою гравитационную ловушку Луну, а Венера – Меркурий. В отличие от Земли, Венера не смогла удержать Меркурий, и он стал ближайшей к Солнцу планетой.

Так или иначе, но на сегодняшний момент в Солнечной системе известно 8 планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и несколько плутоноидов, в том числе Плутон, который до недавнего времени числился среди планет. Все планеты движутся по орбитам в одном направлении и в одной плоскости и почти по круговым орбитам (за исключением плутоноидов). От центра до окраины Солнечной системы (до Плутона) 5,5 световых часов. Расстояние от Солнца до Земли 149 млн. км, что составляет 107 его диаметров. Первые от Солнца планеты по размерам разительно отличаются от последних и в отличие от них называются планетами земной группы, а дальние – планетами гигантами.

Меркурий

Ближайшая к Солнцу планета Меркурий названа в честь римского бога торговли, путешественников и воров. Это маленькая планета быстро перемещается по орбите и очень медленно вращается вокруг своей оси. Меркурий был известен с древнего времени, однако астрономы не сразу поняли,что это планета, и что утром и вечером они видят одну и туже звезду.

Меркурий находится от Солнца на расстояние около 0,387 а.е. (1 а.е. равна среднему радиусу орбиты Земли), и расстояние от Меркурия до Земли, по мере движения его и Земли по своим орбитам, изменяется от 82 до 217 млн. км. Наклон плоскости орбиты Меркурия к плоскости эклиптики (плоскости солнечной системы) составляет 7°. Ось Меркурия почти перпендикулярна к плоскости его орбиты, а орбита его вытянута. Таким образом, на Меркурии не бывает смены времен года, а смены дня и ночи происходят очень редко, примерно раз в два меркурианских года. Одна сторона его, обращенная длительное время к Солнцу, сильно раскалена, а вторая, длительное время отвернутая от Солнца, находится в жутком холоде. Меркурий движется вокруг Солнца со скоростью 47,9 км/с. Вес Меркурия почти в 20 раз меньше, чем вес Земли (0,055M), а плотность – почти такая же, как у Земли (5,43 г/см 3). Радиус планеты Меркурий составляет 0,38R (радиуса Земли, 2440 км).

Из-за близости к Солнцу под действием гравитации в теле Меркурия возникали мощные приливные силы, которые тормозили его вращение вокруг своей оси. В конце концов Меркурий оказался в резонансной западне. Измеренный в 1965 году период его обращения вокруг Солнца составил 87,95 земных суток, а период вращения вокруг своей оси – 58,65 земных суток. Три полных оборота вокруг своей оси Меркурий завершает за 176 суток. За тот же срок планета совершает два оборота вокруг Солнца. В дальнейшем приливное торможение Меркурия должно привести к равенству его оборота вокруг своей оси и оборота вокруг Солнца. Тогда он будет обращен к Солнцу всегда одной строной, как Луна к Земле.

Спутников у Меркурия нет. Возможно, когда-то давно Меркурий сам был спутником Венеры, но из-за солнечной гравитации он был "отобран" у Венеры и стал самостоятельной планетой. Планета имеет фактически сферическую форму. Ускорение свободного падения на его поверхности почти в 3 раза меньше земного (g = 3,72 м/с 2 ).

Близость к Солнцу затрудняет наблюдение Меркурия. На небосклоне он не отходит далеко от Солнца – максимум на 29°, с Земли виден либо перед восходом Солнца (утренняя видимость), либо после захода (вечерняя видимость).

По своим физическим характеристикам Меркурий напоминает Луну, на его поверхности много кратеров. На Меркурии есть очень разреженная атмосфера. Планета обладает крупным железным ядром, являющимся источником гравитации и магнитного поля, напряженность которого составляет 0,1 от напряженности магнитного поля Земли. Ядро Меркурия составляет 70% от объёма планеты. Температура на поверхности колеблется от 90° до 700° К (от –180° до +430° C). Подсолнечная экваториальная сторона нагревается гораздо больше чем полярные области. Разная степень нагревания поверхности создает разницу в температуре разреженной атмосферы, что должно вызывать ее движение – ветер.