Из какого минерала добывают железо. Минералы железа в древней истории человечества

Задавшись вопросом - для чего нужна железная руда становится понятно, что без нее человек не достиг бы высот современного развития цивилизации. Орудия труда и оружие, детали машин и станки – все это можно сделать из железной руды. Сегодня нет ни одной отрасли народного хозяйства, обходящейся без стали или чугуна.

Железо относится к широко распространенным в земной коре химическим элементам. В земной коре этот элемент в чистом виде практически не встречается, он находится в виде соединений (окислов, карбонатов, солей и прочего). Минеральные соединения, в которых содержится значительное количество этого элемента, называют железными рудами. Промышленное использование руд, содержащих в своем составе ≥ 55% железа экономически обосновано. Рудные материалы с меньшим содержанием металла подвергаются предварительному обогащению. Методы обогащения при добыче железных руд постоянно совершенствуются. Поэтому, в настоящее время, требования к количеству железа в составе железной руды (бедной) постоянно снижаются. Руда состоит из соединений рудообразующего элемента, минеральных примесей и пустой породы.

  • руды, образовавшиеся под действием высокой температуры, называют магматогенными;
  • образовавшиеся в результате оседания на дне древних морей – экзогенными;
  • под действием экстремального давления и температуры – метаморфогенными.

Происхождение породы определяет условия добычи полезных ископаемых и в каком виде содержится железо в них.

Главная особенность железных руд – их широкая распространенность и очень значительные запасы в земной коре.

Основные железосодержащие минеральные соединения это:

  • гематит – это наиболее ценный источник железа, так как содержит порядка 68-72% элемента и минимум вредных примесей, залежи гематита называют красным железняком;
  • магнетит - главное свойство железной руды данного вида – магнитные свойства. Наравне с гематитом отличается содержанием железа равным 72,5%, а также высоким содержанием серы. Образует месторождения - магнитные железняки;
  • группа водных окислов металла под общим названием бурые железняки. Эти руды имеют невысокое содержание железа, примеси марганца, фосфора. Это определяет свойства железной руды данного типа – значительную восстанавливаемость, пористость структуры;
  • сидерит (карбонат железа) – отличается высоким содержанием пустой породы, самого металла содержится порядка 48%.

Применение железной руды

Железная руда используется для выплавки из нее чугунов, сталистого чугуна и стали. Однако, прежде чем, железную руду используют по назначению, она подвергается обогащению на горно-обогатительных комбинатах. Это относится к бедным рудным материалам, содержание железа в которых ниже 25-26%. Разработано несколько методов обогащения бедных руд:

  • магнитный способ, он заключается в использовании различий магнитной проницаемости компонентов руды;
  • флотационный способ, использующий различные коэффициенты смачиваемости частиц руды;
  • промывочный способ, удаляющий пустые примеси струями жидкостей под большим давлением;
  • гравитационный способ, применяющий специальные суспензии для удаления пустой породы.

В результате обогащения из железной руды получают концентрат, содержащий до 66-69% металла.

Как и где используется железная руда и концентраты:

  • руда используется в доменном производстве для выплавки чугунов;
  • для получения стали прямым способом, минуя стадию чугуна;
  • для получения ферросплавов.

В итоге, из полученной стали и чугуна изготавливаются профильный и листовой прокат, из которых потом изготавливают необходимые изделия.

/ минерал Железо

Железо относится к группе самородных элементов. Самородное железо является минералом, имеющим земное и космогенное происхождение. Содержание никеля на 3 процента выше в земном железе, по сравнению с космогенным. Также содержатся примеси магния, кобальта и других микроэлементов. Самородное железо имеет светло-серый цвет с металлическим блеском, включения кристаллов редки. Это достаточно редкий минерал, обладающий твердость в 4-5 ед. и плотностью в 7000-7800 кг на метр кубический. Археологи доказали, что самородное железо использовалось древними людьми задолго до того, как появились навыки по выплавке металла железа из руды.

Данный металл в своем первоначальном виде имеет серебристо-белый оттенок, поверхность стремительно покрывается ржавчиной при высокой влажности или в воде, богатой кислородом. Данная порода отличается хорошей пластичностью, плавится при температуре в 1530 градусов по Цельсию, из него без труда можно ковать изделия и производить прокатку. Металл обладает хорошей электро- и теплопроводностью, дополнительно его отличают от других пород магнитные свойства.

При взаимодействии с кислородом поверхность металла покрывается образующейся пленкой, которая защищает его от коррозийного воздействия. А при содержании в воздухе влаги железо окисляется, и на его поверхности образуется ржавчина. В некоторых кислотах железо растворяется, и происходит выделение водорода.

История появления железа

Железо оказало огромное влияние на развитие человеческого общества и продолжает цениться сегодня. Его используют на многих производствах. Железо помогло первобытному человеку освоить новые способы охоты, привело к развитию сельского хозяйства благодаря новым орудиям. Железо в чистом виде в те времена было частью упавших метеоритов. По сегодняшний день ходят легенды о неземном происхождении данного материала. Металлургия берет свое начало в середине второго тысячелетия до н.э. В то время в Египте освоили получение металла из железной руды.

Где добывают железо?

В чистом виде железо содержится в небесных телах. Металл был обнаружен в лунном грунте. Сейчас железо добывают из руды горных пород, и Россия занимает лидирующее место по добыче этого металла. Богатые залежи железной руды расположены в европейской части, в Западной Сибири и на Урале.

Области применения

Железо необходимо при производстве стали, которая имеет широкий диапазон применения. Практически в каждом производстве используется данный материал. Широко применяется железо в быту, его можно встретить в виде кованных изделий и чугуна. Железо позволяет придавать изделию различную форму, поэтому его используют при ковке и создании беседок, ограждений и других изделий.

Пользуются железом все хозяйки на кухне, ведь изделия из чугуна, это не что иное как сплав железа и углерода. Посуда из чугуна равномерно нагревается, долго сохраняет температуру и служит не один десяток лет. В состав практически всех столовых приборов входит железо, а из нержавеющей стали изготовляют посуду и различные кухонные принадлежности и такие необходимые предметы, как лопаты, вилы, топоры и другие полезные приспособления. Широко используется данный металл и в ювелирном деле.

Химический состав

Теллурическое железо содержит примеси никеля (Ni) 0,6-2%, кобальта (Со) до 0,3%, меди (Сu) до 0,4%, платины (Pt) до 0,1%, углерода; в метеоритном железе никель составляет от 2 до 12%, кобальт-около 0,5%, имеются также примеси фосфора, серы, углерода.

Поведение в кислотах: растворяется в НNО3.
В природе существует несколько модификаций железа - низкотемпературная имеет ОЦК ячейку (Im3m), высокотемпературная (при температурах > 1179K) ГЦК ячейку (Fm(-3)m). В больших количествах содержится в метеоритах. В железных метеоритах при травлении или нагреве проявляются видманштеттеновы фигуры.
Происхождение: теллурическое (земное) железо редко встречается в базальтовых лавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в т.ч. и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов - железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Семейство самородного железа (по Годовикову)
Группа самородного железа

Группа самородного никеля
> 24 ат. % Ni - тэнит
62,5 - 92 ат. % Ni - аваруит Ni3Fe
(Ni, Fe) - Самородный никель

Железо (англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO3 ,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

рассказать об ошибке в описании

Свойства минерала

Происхождение названия Обозначение химического элемента - от латинского ferrum, Iron – от староанглийского слова, означавшего этот металл
Место открытия Qeqertarsuaq Island (Disko Island), Qaasuitsup, Greenland
Год открытия известен с древних времён
Термические свойства П. тр. Точка плавления (чистого железа) 1528°С
IMA статус действителен, описан впервые до 1959 (до IMA)
Типичные примеси Ni,C,Co,P,Cu,S
Strunz (8-ое издание) 1/A.07-10
Hey"s CIM Ref. 1.57
Dana (7-ое издание) 1.1.17.1
Молекулярный вес 55.85
Параметры ячейки a = 2.8664Å
Число формульных единиц (Z) 2
Объем элементарной ячейки V 23.55 ų
Двойникование по {111}
Точечная группа m3m (4/m 3 2/m) - Hexoctahedral
Пространственная группа Im3m (I4/m 3 2/m)
Отдельность по (112)
Плотность (расчетная) 7.874
Плотность (измеренная) 7.3 - 7.87
Тип изотропный
Цвет в отраженном свете белый
Форма выделения Форма кристаллических выделений:плотные зерна с неправильными извилистыми очертаниями, плёнки, дендриты, изредка самородки.
Классы по систематике СССР Металлы

Железо - самый распространенный после алюминия металл на земном шаре; оно составляет около 5% земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Железо входит в состав многих минералов, из которых слагаются месторождения железных руд.

Основные рудные минералы железа:

Гематит (железный блеск, красный железняк) - Fe 2 O 3 (до 70% Fe);

Магнетит (магнитный железняк) - Fe 3 O 4 (до 72,4% Fe);

Гетит - FeOOH

Гидрогетит - FeOOH*nH 2 O (лимонит) - (около 62% Fe);

Сидерит - Fe(CO 3) (около 48,2% Fe);

Пирит - FeS 2


Месторождения железных руд образуются в различных геологических условиях; с этим связано разнообразие состава руд и условий их залегания. Железные руды разделяются на следующие промышленные типы:

    Бурые железняки - руды водной окиси железа (главный минерал - гидрогетит), 30-55% железа.

    Красные железняки, или гематитовые руды (главный минерал - гематит, иногда с магнетитом), 51-66% железа.

    Магнитные железняки (главный минерал - магнетит), 50-65% железа.

    Сидеритовые или карбонатные осадочные руды, 30-35% железа.

    Силикатные осадочные железные руды, 25-40% железа.

Большие запасы железных руд находятся на Урале, где целые горы (например Магнитная, Качканар, Высокая и др.) образованы магнитным железняком. Большие залежи железных руд имеются вблизи Курска, на Кольском полуострове, в Западной и Восточной Сибири, на дальнем Востоке. Богатые залежи имеются на Украине.

Железо является также одним из наиболее распространенных элементов в природных водах, где среднее содержание его колеблется в интервале 0,01-26 мг/л.

Животные организмы и растения аккумулируют железо. Активно аккумулируют железо некоторые виды водорослей, бактерии.

В теле человека содержание железа колеблется от 4 до 7г (в тканях, крови, внутренних органах). Железо поступает в организм с пищей. Суточная потребность взрослого человека в железе составляет 11-30мг. В основных пищевых продуктах содержится следующее количество железа (в мкг/100г.):

Молоко - 70

Картофель, овощи, фрукты - от 600 до 900

II . Техногенные источники поступления железа в окружающую среду.

В зонах металлургических комбинатов в твердых выбросах содержится от 22000 до 31000 мг/кг железа.

В прилегающие к комбинатам почвы поступает до 31-42 мг/кг железа. Вследствие этого железо накапливается в огородных культурах.

Много железа поступает в сточные воды и шламы от производств: металлургического, химического, машиностроительного, металлообрабатывающего, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного.

Пыль, дым промышленных производств могут содержать большие количества железа в виде аэрозолей железа, его оксидов, руд.

Пыль железа или его оксидов образуется при заточке металлического инструмента, очистке деталей от ржавчины, прокате железных листов, электросварке и при других производственных процессах, в которых имеют место железо или его соединения.

Железо может накапливаться в почвах, водоемах, воздухе, живых организмах.

Основные минералы железа подвергаются в природе фотохимическому разрушению, комплексообразованию, микробиологическому выщелачиванию, в результате чего, железо из труднорастворимых минералов переходит в водные объекты.

Окисление сульфидов можно описать в общем виде на примере пирита следующими микробиологическими и химическими процессами:


Как видно, при этом образуется еще один загрязняющий поверхностные воды компонент - серная кислота.

О масштабах ее микробиологического образования можно судить по такому примеру. Пирит - обычный примесный компонент угольных месторождений, и его выщелачивание приводит к закислению шахтных вод. По одной из оценок, в 1932г. в реку Огайо (США) с шахтными водами поступило около 3 млн. тонн H 2 SO 4 .

Микробиологическое выщелачивание железа осуществляется не только за счет окисления, но и при восстановлении окисленных руд. В нем принимают участие микроорганизмы, относящиеся к разным группам. В частности, восстановление Fe 3+ до Fe 2+ осуществляют представители родов Bacillus и Pseudomonas, а так же некоторые грибы.

Упомянутые здесь широко распространенные в природе процессы протекают так же в отвалах горнорудных предприятий, металлургических комбинатов, производящих большое количество отходов (шлаки, огарки и т.п.).

С дождевыми, паводковыми и грунтовыми водами высвобождающиеся из твердых матриц металлы переносятся в реки и водоемы. Железо находится в природных водах в разных состояниях и формах: в истинно растворенной форме входят в состав донных отложений и гетерогенных систем (взвеси и коллоиды).

Донные отложения рек и водоемов выступают в качестве накопителя железа. При определенных условиях железо может высвобождаться из них, в результате чего происходит вторичное загрязнение воды.

III . Химические свойства железа, его основные соединения.

Железо - элемент VIII группы периодической системы. Атомный номер 26, атомный вес 55,85 (56). Конфигурация внешних электронов атома 3d 6 4s 2 .

В природных водоемах, например, в Ладожском озере, в Неве, содержание железа меньше 0,3 мг/л. Перед поступлением в сети городского водоснабжения вода из водоемов подвергается фильтрации и действию коагулянтов, которые вместе с органическими примесями удаляют и часть железа.

Обработка воды с повышенным содержанием железа заключается в фильтровании на механических фильтрах (антрацит), коагуляции (коагулянт - глинозем Al 2 (SO 4) 3), иногда - в обработке магнитными полями (в случае магнитных форм железа).

Профилактические мероприятия, обеспечивающие безопасные условия труда при воздействии на работающих железа и его соединений определяются нормативными документами применительно к конкретным условиям производства.

V . Получение железа и его основных соединений, их практическое использование.

Из всех добываемых металлов, железо имеет наибольшее значение. Вся современная техника связана с применением железа и его сплавов. Количество добываемого железа примерно в 15 раз превосходит добычу всех остальных металлов вместе взятых.

Основным промышленным способом получения железа служит производство его в виде различных сплавов с углеродом - чугунов и углеродистых сталей. Чугуны получают доменным процессом, а стали - мартеновским, конверторным и электроплавильным процессами.

В доменном процессе в качестве основных шихтовых материалов участвуют: железная руда, кокс и известняк, необходимые для восстановления окислов железа в руде углеродом и разведения расплавленных чугуна и шлака.

В домну подается воздух или, для ускорения процесса, кислород (кислородное дутье). Углерод кокса окисляется кислородом: C+O 2 =CO 2 ; C+CO 2 =2CO.

Образующийся при этом СО и углерод кокса восстанавливают окислом железа:


Поскольку указанные реакции протекают при избытке углерода, восстановленное железо сплавляется с углеродом и образуется чугун со значительно более низкой температурой плавления, чем чистое железо. Чугун (с 4,3% С) плавится при 1135 о C, а железо при 1539 о C.

Расплавленные низкоплавкие чугун и шлак собираются в горне доменной печи и периодически выпускаются через специальные отверстия.

Способы передела чугуна - мартеновский, конверторный и электроплавильный, - сводятся к удалению избыточного углерода и вредных примесей (S, P) путем их окисления и к доводке содержания легирующих элементов до заданного путем добавления их при плавке.

Предельно допустимое содержание вредных примесей и необходимое содержание легирующих элементов установлены для каждой марки стали.

Чистое железо получают в виде порошка восстановлением его оксидов водородом или термическим разложением карбонила Fe(CO) 5 . Применение чистого железа ограничено, т.к. оно по своим механическим свойствам не удовлетворяет ряду требований к конструкционным материалам. Оно очень пластично.

Железо и его сплавы составляют основу современной техники. Значение железных сплавов для техники следует из того, что 95% всей металлической продукции составляет чугун и только 5% - сплавы остальных металлов.


Соединения железа.

Железный купорос FeSO 4 . 7H 2 O получают путем растворения обрезков стали в 20-30%-ной серной кислоте:


Железный купорос - светло-зеленые кристаллы, хорошо растворимые в воде. Применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей, для очистки сточных вод от цианидов.

При действии на железный купорос щелочи образуются гидроксиды железа - Fe(OH) 2 и Fe(OH) 3 .

Эти гидроксиды применяют в качестве пигментов. Природный гидроксид железа FeS 2 (пирит) служит сырьем для получения серной кислоты, серы и железа.

Нитрат железа Fe(NO 3) 3 получается при действии на железо азотной кислоты. Применяется как протрава при крашении хлопчатобумажных тканей и как утяжелитель шелка.

Хлорид железа FeCl 3 образуется при нагревании железа с хлором, хлорированием FeCl 2 . Применяется как коагулянт при очистке воды, как протрава при крашении тканей, как катализатор в органическом синтезе.

Сульфат железа Fe 2 (SO 4) 3 образует кристаллогидрат Fe 2 (SO 4) 3 . 9H 2 O (желтые кристаллы). Получают растворением оксида Fe 2 O 3 в серной кислоте. Применяется как коагулянт при очистке воды, для травления металлов, используется при получении меди.

Оксиды железа обычно получают при действии водяного пара на раскаленное железо. Природные оксиды железа служат основным сырьем для получения металлического железа (его сплавов).

Fe 2 O 3 и его производные (ферриты) используют в радиоэлектронике как магнитные материалы, в том числе как активные вещества магнитофонных лент.

Fe 3 O 4 служит материалом для изготовления анодов в ряде электрохимических производств.

Ферриты - при сплавлении оксида железа (III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:


В технике ферритами или ферритными материалами называют продукты спекания порошков Fe 2 O 3 и оксидов некоторых двухвалентных металлов, например, Ni, Zn, Mn.

Ферриты обладают ценными магнитными свойствами и высоким электрическим сопротивлением.

Ферриты широко применяются в технике связи, счетно-решающих устройствах, в автоматике и телемеханике.

Соединения железа (VI).

Если нагревать стальные опилки или Fe 2 O 3 с нитратом и гидроксидом калия, то образуется сплав, содержащий феррат калия K 2 FeO 4 - соль железной кислоты H 2 FeO 4 , которая в свободном виде не получена.

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители, более сильные, чем KMnO 4 .

Карбонилы железа

Железо образует летучие соединения с окисью углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 - бледно-желтая жидкость, не растворимая в воде, но растворимая во многих органических растворителях. Fe(CO) 5 получают пропусканием CO над порошком железа при 150-200 o С и давлении 100 атм. При нагревании в вакууме Fe(CO) 5 разлагается на железо и CO. Это используется для получения высокочистого порошкового железа - карбонильного железа.


Сплавы железа - это металлические сплавы на основе железа. До начала XIX века к сплавам железа относили преимущественно Fe-C (с примесями Si, Mn, S, P), получившие название сталей и чугунов. Возрастающие требования техники к металлическим материалам, прежде всего в отношении их механических свойств, жаропрочности, коррозионной стойкости в различных агрессивных средах привели к созданию новых сплавов железа содержащих Cr, Ni, Si, Mo, W и др.

В настоящее время к сплавам железа относят: углеродистые стали, чугуны, легированные стали, содержащие кроме углерода другие элементы, и стали с особыми физико-химическими и механическими свойствами.

Кроме того для введения в сталь легирующих элементов применяются особые сплавы железа, получившие название ферросплавов.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Чугун отличается от стали более высоким содержанием углерода и своими свойствами. Он хрупок, но обладает хорошими литейными свойствами. Чугун дешевле стали. Основная масса чугуна перерабатывается в сталь.

Элементы, специально вводимые в сталь для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной. К важнейшим легирующим элементам относятся Cr, Ni, Mn, W, Mo. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий никель и хром и другие).

Из медно-никелевых сплавов (мельхиор и другие) изготавливают монеты, украшения, предметы домашнего обихода.

Гальванические покрытия металлов никелем предают им красивый внешний вид.

Список использованной литературы:

1. «Краткая химическая энциклопедия».

(издательство «Советская энциклопедия», 1963г.)


2. М.Х. Карапетьянц, С.И. Дракин - «Общая и неорганическая химия»

(издательство «Химия», 1981г.)


3. Н.А. Глинка - «Общая химия»

(издательство «Химия», 1975г.)


4. Справочник «Вредные химические вещества, неорганические соединения элементов V-VIII групп».

(издательство «Химия», 1989г.)


5. В.А. Исидоров - «Введение в химическую экотоксикологию»

(«Химиздат», 1999г.)

Железо представляет собой важный для здоровья человека микроэлемент, значение которого нельзя переоценить, так как он входит в состав семидесяти ферментов, оберегающих клетки организма. Данный металл является важнейшим биологически активным веществом, который имеет способность быстрого восстановления и окисления.

Железо участвует в транспортировке кислорода в крови

Железо в организме человека отвечает за «производство» гемоглобина крови, что нормализует питание тканей, систем и органов. Это обусловлено улучшением кровообращения, благодаря чему поддерживается активность и здоровье организма.

  • Поддержание иммунной системы;
  • Повышение физической активности;
  • Укрепление костных тканей;
  • Нормализация кровообращения;
  • Поддержание работы щитовидной железы;
  • Поддержание и восстановление ЦНС.

В организме человека присутствует очень мало железа, но, несмотря на это без него невозможны многие функции. Основная роль минерала – производство белых (лимфоцитов) и красных (эритроцитов) кровяных клеток. Лимфоциты отвечают за иммунитет, а эритроциты снабжают кровь кислородом.

В организм железо поступает непосредственно с пищей. В продуктах питания животного происхождения данный минерал содержится в легкоусвояемой форме. Существуют и растительные продукты, богатые железом, но организм тяжелее усваивает микроэлемент, поступающий с подобными источниками.

Железо поступает в пищеварительный тракт, где на него воздействует желудочный сок, вследствие чего происходит его усваивание. Всасывание микроэлемента производится непосредственно в двенадцатиперстной кишке, а также в верхнем отделе тонкого кишечника. Именно таким путём железо попадает в кровь, где связывается с белком и вместе с кровотоком переносится в необходимые отделы организма.

В каких продуктах содержится железо

В 100 граммах мяса содержится 2-3 мг железа

Аскорбиновая кислота, сорбит, фруктоза и янтарная кислота обеспечивает лучшее всасывание железа в организм. Соевый белок напротив, угнетает усваивание данного минерала, что говорит о необходимости исключения продукта из рациона при недостатке железа в организме. Чай и кофе содержат частицы, отрицательно влияющие на процесс всасывания микроэлемента, поэтому опытные диетологи рекомендуют после приёма пищи употреблять соки, что благоприятно влияет на усваивание железа клетками пищеварительной системы.

Животные источники железа

  • Мясные продукты – телятина, говядина, свинина, крольчатина, индейка;
  • Субпродукты – печень;
  • Морепродукты – моллюски, улитки, устрицы;
  • Рыба – скумбрия, горбуша;
  • Яичный желток.

Растительные источники железа

  • Злаки – цельная овсянка, гречка;
  • Бобовые – красная фасоль;
  • Овощи – свекла, сельдерей, цветная капуста, помидоры, тыква;
  • Фрукты – яблоки, груши, абрикосы, виноград, инжир, персики;
  • Сухофрукты – курага, чернослив, финики, изюм, груши, яблоки;
  • Ягоды – ежевика, черника, земляника;
  • Грецкие орехи.


Суточные нормы железа

От общего количества железа, которое поступает в организм с продуктами питания, усваивается только 10%. Это обусловлено тем, что разные продукты, содержащие данный минерал усваиваются по-разному. С продуктами животного происхождения микроэлемент усваивается гораздо быстрее и лучше. Суточная норма железа устанавливается для каждого человека индивидуально, что зависит от его образа жизни и возраста.

Суточная норма для детей

Детский организм нуждается в 5-15 миллиграммах в зависимости от возрастной группы, чем старше ребёнок, тем больше минерала ему необходимо.

Суточная норма для женщин

Женский организм при здоровом образе жизни и полноценном питании нуждается в 20 мг железа. В период беременности и в послеродовый период, потребность в минерале увеличивается, и составляет 30 миллиграмм в сутки.

Суточная норма для мужчин

Мужскому организму необходимо от 10 до 15 миллиграмм железа. Необходимость в данном микроэлементе повышается при физических нагрузках и злоупотреблении алкогольными напитками и курением.

Недостаток железа в организме

Нехватка железа в организме человека возникает в следующих случаях:

Период беременности, роста организма и лактации могут также привести к недостатку железа. Дефицит минерала может развиться после перенесенных инфекционных заболеваний, а также при патологических нарушениях кишечной флоры.

Отсутствие в рационе питания мясных продуктов и преобладание корнеплодов и картофеля, приводит к возникновению серьёзных проблем, связанных с дефицитом микроэлемента.

Последствия дефицита железа

  • Развитие мышечной слабости и одышка;
  • Сухость кожных покровов;
  • Преждевременное появление морщин;
  • Ломкость волос и ногтей;
  • Ухудшение памяти;
  • Излишняя раздражительность;
  • Сонливость;
  • Снижение способности сосредоточивания.

Люди, страдающие недостатком железа в организме, отличаются бледностью кожи и склонностью к обморочным состояниям и частым головокружениям.

Избыток железа в организме

Избыток железа в организме также приводит к неприятным последствиям, так как данный микроэлемент обладает способностью накапливания во внутренних органах человека: сердце, печени, поджелудочной железе. Подобное накопление может привести к повреждению тканей внутренних органов, а также к нарушению их физиологических функций.

Видео из интернет

Причины передозировки

  • Повышенная всасываемость железа кишечником;
  • Некоторые наследственные факторы;
  • Массивное переливание крови;
  • Неконтролируемое использование железосодержащих препаратов.

Препараты, содержащие железо

Препараты железа – представляют собой группу лекарственных средств, которые содержат соли и комплексы соединений микроэлемента, или его комбинации с другими минералами. В основном данные препараты используют для профилактики и лечения железодефицитной анемии.


Лекарственные препараты, содержащие данный минерал должны назначаться врачом после проведения необходимых анализов . Самостоятельный приём железа в виде лекарственных средств может нанести большой вред здоровью.

Правила приёма препаратов железа

  1. Запивать небольшим количеством воды;
  2. Не принимать перорально с препаратами кальция, тетрациклинами, левомицетином, а также антацидами (альмагелем, фосфалюгелем и т. д.);
  3. Не увеличивать дозировку даже после пропуска приёма.

Побочные эффекты от приёма препарата железа выражаются в виде гиперемии кожи, тошноты, снижения аппетита, появления запора или диареи, кишечных коликов и отрыжки. В данном случае употребление препаратов следует прекратить.

Особую аккуратность при приёме лекарственных средств данного минерала следует соблюдать в детском возрасте, так как передозировка железа (300 миллиграмм в сутки) может привести к летальному исходу.

В настоящее время наиболее популярны следующие препараты железа, которые обладают максимально точной дозировкой минерала и имеют минимум побочных воздействий на организм:

  1. Конферон (Conferon) – венгерское производство, выпуском по 50 капсул, каждая из которых содержит диоктилсульфосукцинат натрия – 35 мг и сульфат железа (II) - по 250 мг (50 миллиграмм элементарного железа). Натрий способствует всасыванию в организм железа и повышает его терапевтическую эффективность. Назначается при железодефицитной анемии различной этиологии.
  2. Феракрил (Feracrylum)– содержит в составе неполную железную соль полиакриловых кислот. Выпускается в виде стеклообразных хрупких пластинок жёлтого или тёмно-коричневого цвета. Трудно растворяется в воде. Используется для образования сгустков с кровяным белком. Применяется как местное гемостатическое средство.
  3. Феррум лек (Ferrum Lek) – препарат железа для внутривенных и внутримышечных инъекций, югославского производства. Расчёт дозировки лекарственного средства производится для каждого пациента индивидуально.
  4. Гемостимулин (Haemostimulinum) – назначается для стимулирования кровотечений и лечения гипохромных анемий различной этиологии. Выпускается в таблетированной форме. Содержит лактат закисного железа в количестве 0,246 грамма.

Железистые минералы флотируют под воздействием реагентов-нафтеновой олеиновой кислот олеата натрия, жидкого стекла; последнее время успешно применяют окисленный керосин. Для флотации марганцевых руд применяют реагенты: олеиновую кислоту, соевое масло, мыло, растворимое стекло соду.
От других железистых минералов отличается по вишнево-красной черте, оставляемой на неглазурованном фарфоре. Гематит - химически стойкий минерал, образует мощные месторождения железной руды, являющейся ценным сырьем для получения чугуна и стали. Известные месторождения гематитовых руд находятся в районе Курской магнитной аномалии, на Северном Урале, на Украине.
В каолине всегда присутствуют свободные железистые минералы, которые имеют коэффициент преломления 2 2 - 2 4 и интенсивно окрашены, что даже при незначительном их содержании придают каолину самые разнообразные оттенки от светло-желтого до бурого и красно-бурого цвета. На оптические свойства каолина большое влияние оказывают также и титановые минералы, которые даже при небольших количествах (не более 1 %) могут повлиять на его качество.
Большое содержание кварца, а также железистых минералов и других примесей снижает качество огне упорных глин и каолинов, что вызывает в некоторых случаях необходимость их обогащения.
По минералогическому составу основная часть шламов представляет собой железистые минералы: гематит, магнетит, феррит кальция и пирит, встречаются также кварц, силикаты, карбонаты (известь) и обломки зерен органического происхождения - коксик. Наиболее распространенным минералом является гематит. Зерна гематита имеют неправильную форму, размер их колеблется от долей микрона до 0 15 мм, в среднем 0 03 мм. Гематит в основном представлен свободными зернами, реже встречаются сростки гематита и кварца, а также сцементированные стекловидной связкой (оливин) мелкие зерна гематита. В наиболее крупных зернах гематита наблюдается остаточный магнетит. Свободных зерен магнетита не имеется.
Железорудные породы обычно окрашены в бурые, желто-бурые, зеленовато-бурые цвета, в зависимости от цвета слагающих их железистых минералов.
Они обычно содержат наряду с указанными окислами калия и натрия различные примеси, из которых наиболее вредными являются окислы железа, серный колчедан и железистые минералы, сообщающие полевым шпатам желтую или розоватую окраску. Полевой шпат увеличивает тугоплавкость эмали, повышает ее химическую стойкость и усиливает ее непрозрачность в присутствии плавикового шпата и кремнефтористого натрия. При плавке эмали очень важную роль играет крупность размола шпата. Чем больше измельчен шпат, тем легче плавится шихта.
В качестве примесей входят также кремнезем в виде кварца и опала, реже халцедона, диоксид титана в виде рутила и ильменита, железо - в виде различных железистых минералов: лимонит, гематит, сидерит и др. Некоторые каолины содержат минералы гиббсит и диаспор, вследствие чего в них отмечается повышенное содержание оксида алюминия.
Кроме того, к глинистому раствору добавляют специальные утяжелители для доведения его плотности до 1 6 - 2 0 кг / дм3 вместо 1 2 для обычного раствора. В качестве утяжелителей используют железистые минералы (магнетит, гематит), барит, концентрат колошниковой пыли. Такой раствор с утяжелителями применяют в том случае, если давление в скважине оказывается аномально высоким или в призабоинои зоне раствор начинает насыщаться прорывающимися в него газом или нефтью.
Источником железа являются кристаллические породы, содержащие многочисленные железистые минералы. При процессах выветривания железо переходит в гидроокись и перемещается водами в виде механической взвеси и коллоидов гидроокиси железа. Частично перенос осуществляется в виде сульфатов и бикарбонатов закисного железа. Принесенное таким путем железо распределяется в водоемах по законам механической дифференциации согласно с гидродинамикой бассейна. Поскольку частицы взвеси и коллоиды имеют малые размеры, наибольшие (кларковые) количества железа наблюдаются в глинистых; осадках.
Волластонит встречается главным образом в мрамо-ризованных известняках или в известковистых кристаллических сланцах. В качестве примесей ему сопутствуют кварц, железистые минералы, известковистые гранаты, диопсид, везувиан и другие минералы.
Наиболее удобны для выявления условий или колебаний окислительно-восстановительной обстановки широко распространенные в природе железистые минералы, а для выявления реакции среды минералы группы глин и карбонатные минералы.
По сводке, составленной Э. М. Бонштедт, нефелиновые месторождения СССР классифицируются следующим образом. Бесспорное промышленное значение имеют здесь громадные скопления Хибинских тундр: 1) нефелиновые пески, перемытые и в значительной степени очищенные от железистых минералов, продукты ме-хаиич. Имандра между ст. Хибины и Имандра, слагая Большой и Малый Песчаные Наволоки; по подсчету П. А. Борисова общий запас нефелиновых песков до 900 000 т; они содержат до 60 - 70 % нефелина; химич. Отдельными звеньями этой дуги являются мощные интрузии Куэльспора и Порисом-чорра. Минералогический состав этих пород приведен в табл. 3 (по данным В.
Характеристика глинистого сырья по содержанию тонкодисперсных фракций (по ГОСТ 9169 - 75.
По размеру крупнозернистых включений глины подразделяются на группы с мелкими включениями (менее 1 мм), средними - от 1 до 5 мм, крупными - свыше 5 мм. По виду крупноразмерных включений глины подразделяют на группы с включением обломков горных пород (гранит, сланцы, кварциты и др.); железистых минералов; гипса; карбонатов (кальций, доломит и др.); органических остатков и угля. В зависимости от содержания свободного кварца глинистое сырье подразделяют на группы с низким (до 10 %), средним (свыше 10 до 25 %) и высоким (свыше 25 %) содержанием кварца.
К железистым породам относятся железные руды осадочного генезиса, окисные, карбонатные, силикатные и различные железистые образования - орштейны, орзанды, а также россыпи песков, богатые железистыми минералами.
Коэффициенты селективности (А пар катионов тяжелый металл - Са2 (по B.C. Горбатову. При окислительном выветривании и почвообразовании образуются и накапливаются в биосфере минералы железа (III), преимущественно оксиды и гидроксиды, слаборастворимые и геохимически относительно инертные. В почвах обнаружены многие минералы железа (II) и железа (III), в том числе оксиды: гематит Fe2O3, магнетит FeO Fe2O3; маггемит Fe2O3; гидроксиды: гетит FeOOH, лимонит 2Fe2O3 ЗН2О; сульфиды; кислые железистые минералы: ярозит [ NaKFe6 (OH) 12 (SO4) 4l, феронатрит [ Na3Fe (SO4) 3 ЗН2О ], фосфаты, силикаты, арсенаты железа, органожелезистые соединения, аморфные осадки гидроксидов.
В протерозойский этап, продолжавшийся в течение 1 -: 1 5 млрд. лет, вулканическая деятельность была менее интенсивной, в океанах и морях накапливались различные осадки. В некоторых протерозойских водных бассейнах интенсивно развивались различные организмы (например, железоосаждающие бактерии, водоросли и др.), благодаря которым осадки обогащались железом или карбонатами. Вот почему в протерозойских отложениях довольно часто встречаются железистые минералы (руды и железистые) кварциты Курской магнитной аномалии, Канады и др.), мощные толщи известняков, нередко водорослевых, и доломитов, а иногда и прослои шунгитов - прообраз будущих углей. Во многих областях мира протерозойские отложения были погружены на большие глубины, сильно деформированы и пронизаны раскаленной магмой, вследствие чего они сильно изменились и превратились в гнейсы, кварциты и другие метаморфические породы.
Обычное механическое обогащение не обеспечивает получения качественных концентратов из таких продуктов в сочетании с удовлетворительным извлечением. Хотя вряд ли исчерпаны все возможности механического обогащения ожелезненных минеральных смесей, следует Полагать, что решение этого вопроса весьма сложно и потребует длительных изысканий принципиально новых методов на основе тонкого использования различий в физических и физико-химических свойствах ожелезнеиных минералов. В этих условиях приобретают особое значение методы избирательного растворения железистых минералов при сохранении ценных минералов редких металлов в нерастворимом остатке.
В виде случайных примесей металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина пли других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как, например, гематит (мартит и железный блеск), гетит, гидрогетит, гпдрогематит и некоторые другие обладают способностью намагничиваться в электромагнитном поле.
Узянбаш, также обнаружена марганцевая минерализация подобного типа. Здесь в восточном борту той же автомагистрали п.п. Серменево-Аскарово обнажена глинисто-щебнистая элювиальная кора выветривания предположительно по кварцевым алевролитам и кварци-то-песчаникам. Рыхлые отложения имеют яркую желтовато-бурую окраску, указывающую на повышенное содержание железистых минералов в исходных породах. В элювиальных обломках вмещающих отложений нередко встречаются налеты окислов марганца, а иногда и небольшие куски прожилково-вкрапленной до сплошной марганцевой руды.
Конечно, в песке могут попадаться еще и другие, неизмененные водою пли трудно изменяемые ею каменистые вещества, но так как эти последние более или менее подвергаются изменению при продолжительном действии воды, то нередки и такие пески, в которых содержится только почти один чистый кварц. Обыкновенный песок от подмеси посторонних минералов имеет желтый или красно-бурый цвет, зависящий от железистых минералов и железистой глины. Самый чистый песок, или так называемый кварцевый песок, попадается, однако, довольно редко и характеризуется своею бесцветностью и тем, что, взболтанный с водою, не дает мути, которая показывает подмесь глины; при сплавлении с основаниями он дает бесцветное стекло, отчего и составляет ценный материал для производства стекла.
Нефелин входит в состав этих пород как существенная часть; при выработке апатитовых концентратов получаются хвосты с содержанием 70 - 75 % нефелина. Уртитовые и йолитовые жилы находятся также в менее исследованных Ловозерских тундрах; жильные нефелиновые породы встречены также на по-бережьи Белого моря, на Турьем полуострове, в Чешской губе и др. Другой областью накопления нефелиновых пород является Южный Урал, где нефелиновые сиениты-миасскиты слагают меридиональную полосу длиной ок. Ильменские горы, Вишневые горы и др. В составе миасскитов нефелин составляет всего 20 - 25 % при довольно высоком содержании цветных железистых минералов; поэтому практич.
Это можно установить лишь минералогическим анализом, путем непосредственного изучения аутигенных минералов в шлифах, что дает возможность выявить весь ход аутигенного минералообразования и тем самым определить изменение геохимических условий на разных стадиях литогенеза. Поэтому данные химического анализа должны интерпретироваться лишь совместно с данными мине-ралого-петрографических исследований. Учитывая это, а также используя огромный фактический материал по нефтегазоносным регионам Узбекистана, мы (А. М. Акрамходжаев и X. X. Авазходжаев) предложили выделить шесть типов геохимических обстановок, определяемых по соотношению реакцион-носпособных форм железа, сингенетичным и диагенетическим железистым минералам и содержанию остаточного ОВ.
Однако бывают случаи, когда давление газа или нефти гораздо больше гидростатического для данной глубины. Чтобы предотвратить фонтанирование, в этих случаях применяют утяжеленные глинистые растворы. Для этого добавляют в раствор тонко размолотые вещества большой плотности. К таким веществам относятся железистые минералы магнетит и гематит, концентрат колошниковой пыли и барит.
В то же время, сравнивая характеристики магнитного и гравитационного полей, можно видеть, что для указанной области характерны интенсивные отрицательные гравитационные аномалии, а для района Южно-Апшеронской впадины - региональный, гравитационный, отрицательный экстремум. Все это как будто не свидетельствует в пользу развития здесь плотных магнитоактивных тел в основании осадочного разреза и требует поиска иного объяснения слабоположительного поля в Южном Каспии. В качестве такового может быть рассмотрено влияние повышенного содержания магнитоактивных, прежде всего железистых минералов в составе неконсолидированного, песчано-глинистого разреза кайнозоя Южно-Каспийской впадины. Косвенными признаками этого являются геохимические характеристики современных донных отложений, которые показывают повышенное содержание пластического магнетита и титаномагнетита в песках и железистых минералов в глинистых породах, а также повышенное содержание железа в зольных остатках нефтей Южного Каспия, часть которого могла быть прихвачена флюидом из вмещающих пород.
Присутствие в железной руде металлического железа - явление весьма редкое. В виде самородного железа (палласита) оно встречается в некоторых магматических месторождениях. В виде примеси металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина или других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как например, гематит (мар-тит и железный блеск), гетит, гидрогетит, гидрогематит и некоторые другие намагничиваются в электромагнитном поле. В таких случаях металлическое железо удалить при помощи магнита нельзя и его приходится определять наряду с FeO и Fc20s, как указано ниже.

Велер выполнил ряд важных исследований, посвященных титану, этому весьма распространенному в земной коре элементу, огромное практическое значение которого проявляется только в наше время. Открытие титана прежде всего связывается с именем отличного аналитика минералов В. Грегора, который определил в 1789 г., что в рутиле присутствует ранее неизвестный элемент. Клащрот в 1795 г. нашел, что в некоторых железистых минералах содержится новая земля - окись титана. Название элемента было дано Клапротом.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти н газа в южной, центральной и северной зонах, привел к Открытию Ниязбекского месторождения н Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти и газа в южной, центральной и северной зонах, привел к открытию Ниязбекского месторождения и Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Серпентиниты обладают сетчатой и петельчатой структурами. В первом случае они состоят из клиновидного у-лизардита, который хорошо диагностируется по отрицательному удлинению. Промежутки между клиньями у-лизардита заполнены изотропным серпофитом. Петельчатая структура характерна для а-лизардитов. В серпентинитах так же присутствует хризотил. Он, как правило, заполняет трещины и является более поздним образованием. По данным А.А. Алексеева / 1976 /, серпентиниты Кирябинского массива сложены более железистыми минералами по сравнению с аналогичными породами Бирсинского комплекса.
Пересчет химических анализов флогопита из флогопитовых месторождений показал, что увеличение содержания не только FeO, но и Fe2O3 сопровождается уменьшением содержания магнезии и увеличением содержания глинозема (Коржинский, 1945Ь стр. Fe, закисное и окисное, изоморфно с Mg, так как при этом поля составов флогопита и клинопироксена оказываются наиболее узкими. При допущении изоморфности с магнием одного закисного железа точки состава флогопитов рассеиваются в большей степени. Некоторыми авторами высказывалось предположение, что первоначально все железо железо-магнезиальных слюд, а также роговых обманок и некоторых пироксенов, могло находиться в закисном состоянии, изоморфном с магнием, с последующим окислением части железа при понижении температуры. Fe / Mg в группе (Mg Fe) приводит к изменению состава этих минералов в отношении других компонентов; в частности, в флогопитах приводит к повышению содержания глинозема. Это лишает нас возможности точной передачи на одной диаграмме (фиг. Для флогопитовых месторождений, залегающих среди более железистых пород, например среди пироксеновых амфиболитов, характерны не только более железистые минералы, но изменяются и параге-нетические отношения минералов. Именно, вместо ассоциации диопсид скаполит флогопит (фиг.

Геохимия железа

ученика 9 «Б» класса

Раевского Георгия


Железо – не только самый главный металл окружающей нас природы, – оно основа культуры и промышленности, оно орудие войны и мирного труда. И трудно во всей таблице Менделеева найти другой элемент, который был бы так связан с прошлыми, настоящими и будущими судьбами человечества.

Академик Александр Евгеньевич Ферсман, выдающийся советский геохимик, минералог, географ и путешественник

Что такое геохимия?

Римский писатель-эрудит, автор «Естественной истории» Плиний-старший писал: «Железорудные копи доставляют человеку превосходнейшее орудие. Ибо сим орудием прорезываем мы землю, обрабатываем плодовитые сады и, обрезая дикие лозы с виноградом, понуждаем их каждый год юнеть. Сим орудием выстраиваем дома, разбиваем камни и употребляем железо на все подобные надобности».

Полезные ископаемые, в том числе и железо, ценились не только в начале христианской эры, во времена Плиния. В наш век, немыслимый без научно-технических разработок и развитой промышленности, их значение возросло еще больше. Но для того, чтобы человечество получало необходимые элементы в достаточном количестве, их необходимо постоянно добывать. А для этого нужно знать закономерности распределения химических элементов на планете Земля.

Изучением этих закономерностей занимают различные науки, среди которых ведущее место занимает геохимия - наука о химическом составе Земли, законах распределения элементов и их изотопов и о процессах формирования горных пород, почв и и природных вод. (Если кому интересно, то такими же изысканиями во внеземном пространстве занимается наука космохимия). Поскольку химические элементы содержатся в земной коре в виде руд и минералов, геохимия с одной стороны – родная сестра химии, а с другой – тесно соприкасается с геологией. А одной из главных областей геологии является изучение размещения полезных ископаемых в земной коре. Поэтому геохимию часто рассматривают как некую гибридную научную область, возникшую на границе геологии и химии. Так что отчасти будет справедливым такое «уравнение»: «геохимия = геология + химия» – но только отчасти.

Термин «геохимия» появился в последней четверти XIX века. Предположительно, в научный обиход его ввел один из первых профессиональных геохимиков – американский ученый Франк Кларк (1847-1931), которого называют отцом геохимии.

Одним из основателей современной геохимии по праву считается и выдающийся русский ученый В. И. Вернадский. В 1927 году он так расшифровал содержание этой науки: «Геохимия изучает химические элементы, то есть атомы земной коры и, насколько возможно, всей планеты. Она изучает их историю, их распределение и движение в пространстве-времени, их генетические на нашей планете соотношения».

В настоящее время наиболее распространенный взгляд на предмет и содержание геохимии таков: современная геохимия изучает распределение и содержание химических элементов в минералах, рудах, породах, почвах, водах и атмосферную циркуляцию элементов в природе на основе свойств их атомов и ионов.

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, в том числе Земли, где его содержание достигает 90%. Содержание железа в земной коре составляет от 4 до 5%, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86% всего железа, а в мантии 14%.

Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002 – 0,02 мг/л. В речной воде несколько выше – 2 мг/л.

Большую роль железо играет в биосфере, так как атом железа входит в состав гемоглобина – белка красных клеток крови у высших организмов. Гемоглобин участвует в доставке кислорода к тканям и клеткам.

Считается, что железо вместе с никелем, кобальтом и кислородом (по другой теории – водородом) входит в состав земного ядра. Давление в центре Земли колоссальное (около 3 миллионов атмосфер), и свойства этих элементов, в том числе и железа должны стать необычными. Ученые полагают, что при таких сжатиях водород становится металлом, а электронная структура атомов железа и других металлов (прежде всего, внешние электронные оболочки) может сильно изменяться. Однако, хотя фантасты уже много раз описали путешествие к центру Земли, непосредственно состав земного ядра мы изучить не можем: геохимики судят о нем на основе косвенных данных.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Рудами называются природные минералы, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Содержание железа в промышленных рудах изменяется в широких пределах – от 16 до 70%. В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или, если они содержат менее 50% Fe, после обогащения. Бóльшая часть железных руд используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах они используются в качестве природных красок (охры) и утяжелителей буровых глинистых растворов.

Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeO.Fe2O3, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в коре выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, имеющий форму чёрных удлинённых кристаллов и радиально-лучистых агрегатов.

В природе также широко распространены сульфиды железа - пирит FeS2(серный или железный колчедан) и пирротин. Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Другие часто встречающиеся минералы железа:

· Сидерит - FeCO3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом.

· Марказит - FeS2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов.

· Лёллингит - FeAs2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов.

· Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм.

· Мелантерит - FeSO4·7H2O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие.

· Вивианит - Fe3(PO4)2·8H2O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов.

В земной коре содержатся и другие, менее распространенные минералы железа, например:

Основные месторождения железных руд

Основные месторождения железа находятся в Австралии, Бразилии, Венесуэле, Индии, Канаде, Либерии, России, США, Франции, Швеции.

Россия по запасам железных руд занимает одно из первых мест в мире.

Главные месторождения железной руды на геологической карте мира

Интересный геохимический факт:

Очень немногие элементы встречаются в природе в свободном виде. В такой форме они называются самородными. Металлы и большинство неметаллов вступают в соединение с другими элементами, особенно с кислородом, очень легко. Поэтому в земной коре они почти всегда находятся в связанном виде, в составе разных соединений. Железо является элементом весьма активным, легко окисляющимся, особенно в присутствии влаги. Однако в природе встречается самородное железо. Этослучай совершенно исключительный, потому что железо в самородном виде попадает в земную кору в составе метеоритов.

А вот что рассказывает в популярной книге о геохимии железа академик Ферсман:

«Железо принадлежит к важнейшим металлам мироздания. Мы видим его линии во всех космических телах, они сверкают нам в атмосферах раскаленных звезд, мы видим бурные атомы железа, мятущиеся на солнечной поверхности, они падают к нам ежегодно на землю в виде тонкой космической пыли, в виде железных метеоритов. В штате Аризона, в Южной Африке, у нас в бассейне Подкаменной Тунгуски упали грандиозные массы самородного железа, этого важнейшего металла мироздания. Геофизики утверждают, что весь центр Земли состоит из массы никелистого железа, и что наша земная кора есть такая же окалина, как те стекловидные шлаки, которые вытекают из доменной печи во время выплавки чугуна.

…Геохимики раскрывают нам историю железа. Они говорят о том, что даже земная кора на 4,2% состоит из железа, что из металлов только алюминия больше в окружающей нас природе, чем железа. Мы знаем, что оно входит в состав тех расплавленных масс, которые в виде оливиновых и базальтовых пород застывают в глубинах как самые тяжелые и первозданные породы. железо геохимия минерал месторождение

Мы знаем, что сравнительно мало железа остается в гранитных породах, о чнм говорят их светлые – белые, розовые, зеленые – краски. Но на земной поверхности сложные химические реакции всё же накапливают огромные запасы железной руды. Одни из них образуются в субтропиках, там, где периоды тропических дождей сменяются яркими солнечными днями знойного лета, где все растворимое вымывается из горных пород, и образуются большие скопления – корки руд железа и алюминия.

Мы знаем, как на дно озер северных стран, например, нашей Карелии, бурные воды, содержащие органическое вещество , приносят весной огромные количества железа из разных горных пород; на дне озер, куда стекают воды, осаждаются горошинки или целые стяжения железа при участии особых железных бактерий… Так, в болотах, морских глубинах, в течении долгой геологической истории нашей Земли образовались скопления железных руд; и нет никакого сомнения, что в ряде случаев животная и растительная жизнь оказала свое влияние на образование этих месторождений.

Так образовались крупные Керченские месторождения; так образовались, по всей вероятности, и огромные запасы железных руд Кривого Рога и Курской магнитной аномалии.

Руды этих двух последних месторождений так давно были отложены водами древних морей, что горячее дыхание глубин успело изменить их строение, и вместо бурых железняков, как в Керчи, мы видим здесь измененные черные руды, состоящие из железного блеска (гематита, или красного железняка) и магнитного железняка.

Странствование железа не прекращается на земной поверхности. Правда, в морской воде его накапливается очень мало; и правильно говорят, что эта вода почти не содержит железа. Однако в особых, исключительных условиях даже в море, в мелководных заливах отлагаются железистые осадки, целые железорудные залежи, которые встречаются и в ряде древних морских отложений. Так образовались наши знаменитые железорудные месторождения на Украине близ Хопра, Керчи и Аяти. Но на земной поверхности – в ручьях, реках, озерах, болотах – всюду странствует железо; и растения всегда находят для себя этот важный химический элемент , без которого невозможна растительная жизнь. Попробуйте лишить железа горшочек с цветами, и вы увидите, что цветы скоро потеряют свои краски и запах, листья сделаются желтыми, начнут сохнуть…

…Так в растении, в живом организме завершается круговорот железа на земле, и красные кровяные шарики в крови человека являются одним из последних этапов в странствовании этого металла, без которого нет ни жизни, ни мирного труда».

Будущее железа

Железный век - эпоха, начавшаяся еще в первобытной истории человечества, когда возникла металлургия железа и изготовление железных орудий – продолжается. Примерно всех девяносто всех используемых человечеством металлов и сплавов сделаны на основе железа. Железа выплавляется в мире примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Пластмассы? Но они в наше время чаще всего выполняют в различных конструкциях иные функции, а если уж их в соответствии с традицией пытаются ввести в ранг «незаменимых заменителей», то чаще всего они заменяют цветные металлы, а не черные. На замену стали идут лишь несколько процентов потребляемых нами пластиков.

Сплавы на основе железа универсальны, технологичны, доступны и в массе – дешевы. Сырьевая база этого металла тоже не вызывает опасений: уже разведанных запасов железных руд людям пока хватает. Кроме того, ученые уверены, что открытия, которые будут сделаны в области геохимии железа(а в дальнейшем – и космохимии железа), дадут человечеству новые источники этого незаменимого элемента. Исследования в этой области геохимии необходимы, потому что железо можно без преувеличения назвать фундаментом нашей цивилизации.


Литература

1) Википедия, статья «Железо»

2) Большая Советская Энциклопедия, статья «Железные руды»

(http://bse.sci-lib.com/article039128.html).

Которые принадлежат к группе железа, делят на теллурические (земные), возникающие в условиях земной коры,и космические, попадающие на земную поверхность в виде метеоритов.

Теллурическое - α-Fe . Синоним - феррит. Теллурическое встречается очень редко. Обычно содержит примеси Ni, Со, Сu, Pt и других элементов. - кубическая, вид симметрии - гексоктаэдрический. O h - m3m(3L 4 L⁶ 3 6L 2 9PC) Структурная ячейка содержит 2(Fe, Ni). Пространственная группа - 0⁹ h - Im3m. Структура теллурического железа представляет собой центрированный куб (тип металлического тантала) с а 0 = 2,8607.

Агрегаты и габитус. Кристаллы встречаются очень редко. Преобладают зерна неправильной формы.

Физические свойства . Цвет теллурического железа стально-серый, блеск металлический, черта стально-серая, блестящая. Сильно выражены магнитные свойства и ковкость. Твердость - 4-5, плотность - 7-7,8. Диагностические признаки. Характерные признаки железа - магнитность и ковкость. Отличие от сходных минералов. От самородной платины отличается сильной магнитностью, плотностью, а также растворимостью в HNО 3 . Главные линии на рентгенограммах: 2,02; 1,430; 1,168. Искусственное получение. Железо получают при металлургических процессах из различных железных руд путем восстановления углеродом по реакции:

2Fe 2 О 3 + ЗС = 4Fe + ЗСО 2 .

Образование и месторождения . Теллурическое железо образует вкрапленность, а иногда сплошные массы в основных и ультраосновных породах. Оно также встречается в виде отдельных зерен в россыпях. По происхождению теллурическое железо может быть магматическим и поверхностным. В первом случае оно возникает при раскристаллизации основных и ультраосновных пород, во втором - под влиянием процессов выветривания. Считают, что железо изверженных пород выносится со значительных глубин земли либо восстанавливается в магме углеродом или органическими веществами, захваченными магмой во время интрузии. Образование железа при выветривании также происходит вследствие восстановления: при каменноугольных пожарах самородное железо, например, может возникать по той же реакции, что приведена для искусственного получения. Земное самородное железо в значительном количестве встречается только в базальтах острова Диско (Гренландия) в виде крупных глыб.

Оно известно также вблизи г. Касселя (Германия). Земное железо ассоциирует здесь с пирротином (Fe 1-n Fe 2 / 3n S), троилитом (FeS) и когенитом (Fe 3 C). В России земное железо известно в некоторых пунктах Карелии и Урала и на Украине в базальтах Яновой Долины (Ровенская область). Практического значения все эти проявления не имеют.

Метеорное железо . Метеорное железо встречается значительно чаще, нежели теллурическое. Оно представлено двумя минералами, которые являются твердыми растворами никеля в железе - камаситом и тэнитом.


Состав и свойства метеорного железа

Минерал

Химический состав, %

Плотность

ао

Тэнит …………..

93,1

75,3

24,4

2,859

3,590

7,3-7,87

7,8-8,2


Камасит (от греч. камакс - балка, стержень) - главная часть железных метеоритов. Он образует правильные закономерные срастания больших балок, которые переплетаются между собой или прилегают одна к другой. Между балок зажат тэнит (от греч. тайния - лента, полоса).

В связи с разным отношением этих двух минералов к травлению HNО 3 (камасит травится легче, чем тэнит) на полированной поверхности метеоритов появляется структура в виде так называемых видманштеттовых фигур, что является диагностическим признаком метеорного железа. Находки метеорного железа многочисленны. Наиболее известно так называемое «Палласово железо», найденное в 1749 г. на горе Темир между Красноярском и Минусинском и описанное академиком Палласом (начальный вес «Палласового железа» составлял 688 кг).

/ минерал Железо

Железо относится к группе самородных элементов. Самородное железо является минералом, имеющим земное и космогенное происхождение. Содержание никеля на 3 процента выше в земном железе, по сравнению с космогенным. Также содержатся примеси магния, кобальта и других микроэлементов. Самородное железо имеет светло-серый цвет с металлическим блеском, включения кристаллов редки. Это достаточно редкий минерал, обладающий твердость в 4-5 ед. и плотностью в 7000-7800 кг на метр кубический. Археологи доказали, что самородное железо использовалось древними людьми задолго до того, как появились навыки по выплавке металла железа из руды.

Данный металл в своем первоначальном виде имеет серебристо-белый оттенок, поверхность стремительно покрывается ржавчиной при высокой влажности или в воде, богатой кислородом. Данная порода отличается хорошей пластичностью, плавится при температуре в 1530 градусов по Цельсию, из него без труда можно ковать изделия и производить прокатку. Металл обладает хорошей электро- и теплопроводностью, дополнительно его отличают от других пород магнитные свойства.

При взаимодействии с кислородом поверхность металла покрывается образующейся пленкой, которая защищает его от коррозийного воздействия. А при содержании в воздухе влаги железо окисляется, и на его поверхности образуется ржавчина. В некоторых кислотах железо растворяется, и происходит выделение водорода.

История появления железа

Железо оказало огромное влияние на развитие человеческого общества и продолжает цениться сегодня. Его используют на многих производствах. Железо помогло первобытному человеку освоить новые способы охоты, привело к развитию сельского хозяйства благодаря новым орудиям. Железо в чистом виде в те времена было частью упавших метеоритов. По сегодняшний день ходят легенды о неземном происхождении данного материала. Металлургия берет свое начало в середине второго тысячелетия до н.э. В то время в Египте освоили получение металла из железной руды.

Где добывают железо?

В чистом виде железо содержится в небесных телах. Металл был обнаружен в лунном грунте. Сейчас железо добывают из руды горных пород, и Россия занимает лидирующее место по добыче этого металла. Богатые залежи железной руды расположены в европейской части, в Западной Сибири и на Урале.

Области применения

Железо необходимо при производстве стали, которая имеет широкий диапазон применения. Практически в каждом производстве используется данный материал. Широко применяется железо в быту, его можно встретить в виде кованных изделий и чугуна. Железо позволяет придавать изделию различную форму, поэтому его используют при ковке и создании беседок, ограждений и других изделий.

Пользуются железом все хозяйки на кухне, ведь изделия из чугуна, это не что иное как сплав железа и углерода. Посуда из чугуна равномерно нагревается, долго сохраняет температуру и служит не один десяток лет. В состав практически всех столовых приборов входит железо, а из нержавеющей стали изготовляют посуду и различные кухонные принадлежности и такие необходимые предметы, как лопаты, вилы, топоры и другие полезные приспособления. Широко используется данный металл и в ювелирном деле.

Химический состав

Теллурическое железо содержит примеси никеля (Ni) 0,6—2%, кобальта (Со) до 0,3%, меди (Сu) до 0,4%, платины (Pt) до 0,1%, углерода; в метеоритном железе никель составляет от 2 до 12%, кобальт—около 0,5%, имеются также примеси фосфора, серы, углерода.

Поведение в кислотах: растворяется в НNО3.
В природе существует несколько модификаций железа - низкотемпературная имеет ОЦК ячейку (Im3m), высокотемпературная (при температурах > 1179K) ГЦК ячейку (Fm(-3)m). В больших количествах содержится в метеоритах. В железных метеоритах при травлении или нагреве проявляются видманштеттеновы фигуры.
Происхождение: теллурическое (земное) железо редко встречается в базальтовых лавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в т.ч. и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов - железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Семейство самородного железа (по Годовикову)
Группа самородного железа
< 2,9, редко до 6,4 ат. % Ni - феррит
< ~ 6,4 ат. % Ni - камасит

Группа самородного никеля
> 24 ат. % Ni - тэнит
62,5 - 92 ат. % Ni - аваруит Ni3Fe
(Ni, Fe) - Самородный никель

Железо (англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO3 ,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

рассказать об ошибке в описании

Свойства Минерала

Цвет Стально-серый, серо-черный, на полированной поверхности белый
Цвет черты Серо-черный
Происхождение названия Обозначение химического элемента - от латинского ferrum, Iron – от староанглийского слова, означавшего этот металл
Место открытия Qeqertarsuaq Island (Disko Island), Qaasuitsup, Greenland
Год открытия известен с древних времён
IMA статус действителен, описан впервые до 1959 (до IMA)
Химическая формула Fe
Блеск металлический
Прозрачность непрозрачный
Спайность несовершенная по {001}
Излом крючковатый
занозистый
Твердость 4
5
Термические свойства П. тр. Точка плавления (чистого железа) 1528°С
Типичные примеси Ni,C,Co,P,Cu,S
Strunz (8-ое издание) 1/A.07-10
Hey"s CIM Ref. 1.57
Dana (7-ое издание) 1.1.17.1
Молекулярный вес 55.85
Параметры ячейки a = 2.8664Å
Число формульных единиц (Z) 2
Объем элементарной ячейки V 23.55 ų
Двойникование по {111}
Точечная группа m3m (4/m 3 2/m) - Hexoctahedral
Пространственная группа Im3m (I4/m 3 2/m)
Отдельность по (112)
Плотность (расчетная) 7.874
Плотность (измеренная) 7.3 - 7.87
Тип изотропный
Цвет в отраженном свете белый
Форма выделения Форма кристаллических выделений:плотные зерна с неправильными извилистыми очертаниями, плёнки, дендриты, изредка самородки.
Классы по систематике СССР Металлы

Ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после ).

Смотрите так же:

СТРУКТУРА

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а 0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a 0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С -а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С - аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) - д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа - это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая - 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа - хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10 −5 -1·10 −8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe 1-x S) и когенит (Fe 3 C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO) n . В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Железо - один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов - например, никелевых.
Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание) 1/A.07-10
Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.17.1